×

A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. (English) Zbl 1183.76850

Summary: The method of moments is employed to extend the validity of continuum-hydrodynamic models into the transition-flow regime. An evaluation of the regularized 13 moment equations for two confined flow problems, planar Couette and Poiseuille flows, indicates some important limitations. For planar Couette flow at a Knudsen number of 0.25, they fail to reproduce the Knudsen-layer velocity profile observed using a direct simulation Monte Carlo approach, and the higher-order moments are not captured particularly well. Moreover, for Poiseuille flow, this system of equations creates a large slip velocity leading to significant overprediction of the mass flow rate for Knudsen numbers above 0.4. To overcome some of these difficulties, the theory of regularized moment equations is extended to 26 moment equations. This new set of equations highlights the importance of both gradient and non-gradient transport mechanisms and is shown to overcome many of the limitations observed in the regularized 13 moment equations. In particular, for planar Couette flow, they can successfully capture the observed Knudsen-layer velocity profile well into the transition regime. Moreover, this new set of equations can correctly predict the Knudsen layer, the velocity profile and the mass flow rate of pressure-driven Poiseuille flow for Knudsen numbers up to 1.0 and captures the bimodal temperature profile in force-driven Poiseuille flow. Above this value, the 26 moment equations are not able to accurately capture the velocity profile in the centre of the channel. However, they are able to capture the basic trends and successfully predict a Knudsen minimum at the correct value of the Knudsen number.

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics

Software:

HE-E1GODF
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1098/rspa.2008.0071 · Zbl 1145.76353
[2] DOI: 10.1103/PhysRevE.76.026315
[3] DOI: 10.1063/1.869849 · Zbl 1185.76858
[4] DOI: 10.1007/BF02179552 · Zbl 1081.82619
[5] DOI: 10.1016/0045-7825(79)90034-3 · Zbl 0423.76070
[6] Kogan, Rarefied Gas Dynamics (1969)
[7] DOI: 10.1103/PhysRevE.57.1668
[8] DOI: 10.1002/1521-3889(200211)11:10/11<783::AID-ANDP783>3.0.CO;2-V · Zbl 1068.76074
[9] DOI: 10.1023/A:1010365123288 · Zbl 1019.82018
[10] Jin, Acta Math. Appl. Sinica 18 pp 37– (2002) · Zbl 0998.82027
[11] DOI: 10.1017/S0022112095000358
[12] DOI: 10.1063/1.2393436 · Zbl 1146.76400
[13] DOI: 10.1063/1.1874193 · Zbl 1187.76199
[14] DOI: 10.1016/0377-0257(95)01372-3
[15] DOI: 10.1016/j.jcp.2006.11.032 · Zbl 1201.76127
[16] DOI: 10.1080/15567260701337696
[17] DOI: 10.1016/j.physrep.2004.03.006
[18] DOI: 10.1063/1.1706716 · Zbl 0115.45006
[19] DOI: 10.1023/A:1020498111819 · Zbl 1101.82336
[20] DOI: 10.1209/0295-5075/77/30003
[21] DOI: 10.1002/cpa.3160050304 · Zbl 0047.18801
[22] DOI: 10.1002/cpa.3160020403 · Zbl 0037.13104
[23] DOI: 10.1002/cpa.3160020402 · Zbl 0036.04102
[24] DOI: 10.1002/fld.1650080602 · Zbl 0668.76118
[25] DOI: 10.1016/j.physrep.2008.04.010
[26] DOI: 10.1063/1.2429037 · Zbl 1146.76566
[27] DOI: 10.1115/1.2822013
[28] DOI: 10.1017/S0022112004009826 · Zbl 1107.76070
[29] Ferziger, Computational Methods for Fluid Dynamics (1999)
[30] DOI: 10.1006/jcph.2001.6790 · Zbl 1058.76056
[31] DOI: 10.1063/1.1782751 · Zbl 1187.76505
[32] Sone, Eur. J. Mech. 9 pp 273– (1990)
[33] DOI: 10.1007/s000330300005 · Zbl 1022.76046
[34] DOI: 10.1016/S0021-9991(03)00231-6 · Zbl 1061.76515
[35] DOI: 10.1016/0021-8928(93)90137-B
[36] DOI: 10.1088/0960-1317/9/4/317
[37] DOI: 10.1017/S0022112005008153 · Zbl 1097.76061
[38] DOI: 10.2514/3.8284 · Zbl 0528.76044
[39] Renardy, Mathematical Analysis of Viscoelastic Flows (2000)
[40] DOI: 10.1007/s001610050112 · Zbl 0937.76079
[41] DOI: 10.1098/rsta.2003.1281 · Zbl 1068.76044
[42] DOI: 10.1016/0377-0257(90)85008-M · Zbl 0709.76011
[43] Patankar, Numerical Heat Transfer and Fluid Flow (1980)
[44] DOI: 10.1063/1.857478 · Zbl 0696.76092
[45] Muller, Extended Thermodynamics (1993)
[46] DOI: 10.1002/fld.1747 · Zbl 1148.76043
[47] DOI: 10.1098/rstl.1879.0067 · JFM 11.0777.01
[48] DOI: 10.1063/1.1599355 · Zbl 1186.76356
[49] Marques, Contin. Mech. Thermodyn 13 pp 207– (2001) · Zbl 1100.76584
[50] DOI: 10.1016/S0378-4371(97)00149-0
[51] DOI: 10.1007/s00161-003-0144-2 · Zbl 1100.80002
[52] Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers (1997) · Zbl 0892.35001
[53] White, Viscous Fluid Flow (1991)
[54] DOI: 10.1209/epl/i2005-10535-x
[55] DOI: 10.1103/PhysRevE.62.5835
[56] DOI: 10.1146/annurev.fluid.30.1.329 · Zbl 1398.76180
[57] DOI: 10.1103/PhysRevE.60.4063
[58] Truesdell, Fundamentals of Maxwell’s Kinetic Theory of a Simple Monotomic Gas (1980)
[59] DOI: 10.1016/j.jcp.2007.10.006 · Zbl 1132.76049
[60] DOI: 10.1017/S0022112004009917 · Zbl 1107.76069
[61] DOI: 10.1137/050635444 · Zbl 1388.76340
[62] Toro, Riemann Solvers and Numerical Methods for Fluids Dynamics: A Practical Introduction (1999) · Zbl 0923.76004
[63] DOI: 10.1007/BF02187068 · Zbl 0839.76076
[64] DOI: 10.1063/1.869621
[65] DOI: 10.2514/1.4120
[66] Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) · Zbl 0990.76001
[67] DOI: 10.1103/PhysRevE.78.046301
[68] DOI: 10.1103/PhysRevLett.99.014502
[69] DOI: 10.1063/1.1597472 · Zbl 1186.76504
[70] DOI: 10.1016/j.physa.2007.11.044 · Zbl 1395.82210
[71] Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows. (2005) · Zbl 1119.76002
[72] Chapman, The Mathematical Theory of Non-uniform Gases. (1970)
[73] Cercignani, Rarefied Gasdynamics: From Basic Concepts to Actual Calculations (2000) · Zbl 0961.76002
[74] Cercignani, The Boltzmann Equation and Its Applications. (1988) · Zbl 0646.76001
[75] Bobylev, Sov. Phys.-Dokl. 27 pp 29– (1982)
[76] Bird, Molecular Gasdynamics and the Direct Simulation of Gas Flows. (1994)
[77] DOI: 10.1063/1.1899210 · Zbl 1187.76032
[78] DOI: 10.1103/PhysRevE.68.016302
[79] DOI: 10.1103/PhysRevE.65.026315
[80] DOI: 10.1002/fld.428 · Zbl 1025.76024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.