zbMATH — the first resource for mathematics

Is grid turbulence Saffman turbulence? (English) Zbl 1183.76749
Summary: There has been a longstanding debate as to whether the large scales in grid turbulence should be classified as of the Batchelor or Saffman type. In the former, the integral scales, \(u\) and \(\ell \), satisfy \(u^{2}\ell ^{5} \approx \) constant, while in Saffman turbulence we have \(u^{2}\ell ^{3} =\) constant. For strictly homogeneous turbulence the energy decay rates in these two types of turbulence differ, with \(u^{2} \sim t^{-10/7}\) in Batchelor turbulence and \(u^{2} \sim t^{-6/5}\) in Saffman turbulence. We present high-resolution measurements of grid turbulence taken in a large wind tunnel. The particularly large test section allows us to measure energy decay exponents with high accuracy. We find that the turbulence behind the grid is almost certainly of the Saffman type, with \(u^{2}\ell ^{3} = \) constant. The measured energy decay exponent, however, is found to lie slightly below the theoretical prediction of \(u^{2} \sim t^{-1.2}\). Rather we find \(u^{2} \sim t^{-n}\), with \(n = 1.13 \pm 0.02\). This discrepancy is shown to arise from a weak temporal decay of the dimensionless energy dissipation coefficient, \(\epsilon \ell /u^{3}\), which is normally taken to be constant in strictly homogeneous turbulence, but which varies very slowly in grid turbulence.

76F05 Isotropic turbulence; homogeneous turbulence
homogeneous; theory
Full Text: DOI
[1] DOI: 10.1063/1.866279 · doi:10.1063/1.866279
[2] DOI: 10.1017/S0022112090002919 · doi:10.1017/S0022112090002919
[3] DOI: 10.1017/S0022112066001071 · doi:10.1017/S0022112066001071
[4] DOI: 10.1017/S0022112006001625 · Zbl 1100.76028 · doi:10.1017/S0022112006001625
[5] DOI: 10.1017/S0022112009007137 · Zbl 1183.76748 · doi:10.1017/S0022112009007137
[6] Davidson, Turbulence, An Introduction for Scientists and Engineers (2004)
[7] DOI: 10.1017/S0022112066000338 · doi:10.1017/S0022112066000338
[8] DOI: 10.1017/S0022112078002335 · doi:10.1017/S0022112078002335
[9] DOI: 10.1063/1.862168 · doi:10.1063/1.862168
[10] DOI: 10.1017/S030500410002380X · doi:10.1017/S030500410002380X
[11] DOI: 10.1098/rsta.1956.0002 · Zbl 0074.42501 · doi:10.1098/rsta.1956.0002
[12] DOI: 10.1017/S0022112067000552 · Zbl 0148.22403 · doi:10.1017/S0022112067000552
[13] DOI: 10.1146/annurev.fluid.30.1.31 · Zbl 1398.76084 · doi:10.1146/annurev.fluid.30.1.31
[14] DOI: 10.1063/1.1445422 · doi:10.1063/1.1445422
[15] DOI: 10.1017/S0022112007006763 · Zbl 1118.76008 · doi:10.1017/S0022112007006763
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.