×

zbMATH — the first resource for mathematics

Closed-loop control of an open cavity flow using reduced-order models. (English) Zbl 1183.76701
Summary: The control of separated fluid flow by reduced-order models is studied using the two-dimensional incompressible flow over an open square cavity at Reynolds numbers where instabilities are present. Actuation and measurement locations are taken on the upstream and downstream edge of the cavity. A bi-orthogonal projection is introduced to arrive at reduced-order models for the compensated problem. Global modes, proper orthogonal decomposition (POD) modes and balanced modes are used as expansion bases for the model reduction. The open-loop behaviour of the full and the reduced systems is analysed by comparing the respective transfer functions. This analysis shows that global modes are inadequate to sufficiently represent the input-output behaviour whereas POD and balanced modes are capable of properly approximating the exact transfer function. Balanced modes are far more efficient in this process, but POD modes show superior robustness. The performance of the closed-loop system corroborates this finding: while reduced-order models based on POD are able to render the compensated system stable, balanced modes accomplish the same with far fewer degrees of freedom.

MSC:
76D55 Flow control and optimization for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76E99 Hydrodynamic stability
Software:
ARPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cattafesta, AIAA Paper 2003-3567 33rd AIAA Fluid Dyn. Conf. (2003)
[2] DOI: 10.1016/0167-6911(93)90117-O · Zbl 0785.93042 · doi:10.1016/0167-6911(93)90117-O
[3] DOI: 10.1017/S0022112003006694 · Zbl 1067.76033 · doi:10.1017/S0022112003006694
[4] DOI: 10.1109/TAC.1981.1102568 · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[5] DOI: 10.1017/S0022112006002989 · Zbl 1104.76071 · doi:10.1017/S0022112006002989
[6] DOI: 10.1115/1.3124438 · doi:10.1115/1.3124438
[7] DOI: 10.1017/S0022112007009925 · Zbl 1151.76468 · doi:10.1017/S0022112007009925
[8] DOI: 10.1017/S0022112008000323 · Zbl 1191.76053 · doi:10.1017/S0022112008000323
[9] DOI: 10.1017/S0022112008001109 · Zbl 1151.76470 · doi:10.1017/S0022112008001109
[10] DOI: 10.1016/S0376-0421(00)00016-6 · doi:10.1016/S0376-0421(00)00016-6
[11] Lumley, Stochastic Tools in Turbulence (1970) · Zbl 0273.76035
[12] DOI: 10.1146/annurev.fl.25.010193.002543 · doi:10.1146/annurev.fl.25.010193.002543
[13] Lehoucq, ARPACK Users Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi methods (1998) · Zbl 0901.65021 · doi:10.1137/1.9780898719628
[14] Bergman, Phys. Fluids 17 pp 305– (2006)
[15] DOI: 10.1137/S0895479899358595 · Zbl 1004.65044 · doi:10.1137/S0895479899358595
[16] DOI: 10.1017/S002211200200232X · Zbl 1026.76019 · doi:10.1017/S002211200200232X
[17] DOI: 10.1063/1.1359420 · Zbl 1184.76320 · doi:10.1063/1.1359420
[18] DOI: 10.1017/S0022112004009711 · Zbl 1163.76354 · doi:10.1017/S0022112004009711
[19] DOI: 10.1017/S0022112007005204 · Zbl 1113.76008 · doi:10.1017/S0022112007005204
[20] DOI: 10.1017/S0022112005005112 · Zbl 1073.76027 · doi:10.1017/S0022112005005112
[21] DOI: 10.1146/annurev.fluid.38.050304.092057 · Zbl 1101.76019 · doi:10.1146/annurev.fluid.38.050304.092057
[22] DOI: 10.1002/(SICI)1097-0363(19990930)31:2&lt;451::AID-FLD885&gt;3.0.CO;2-O · Zbl 0965.76041 · doi:10.1002/(SICI)1097-0363(19990930)31:2<451::AID-FLD885>3.0.CO;2-O
[23] Rowley, Thirty-eighth Fluid Dynamics Conference and Exhibit (2008)
[24] Delville, Flow Control: Fundamentals and Practice pp 199– (1998)
[25] DOI: 10.1142/S0218127405012429 · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[26] DOI: 10.1016/j.jcp.2006.10.035 · Zbl 1123.76018 · doi:10.1016/j.jcp.2006.10.035
[27] DOI: 10.1115/1.2175159 · doi:10.1115/1.2175159
[28] DOI: 10.1017/S0022112007007392 · Zbl 1141.76379 · doi:10.1017/S0022112007007392
[29] DOI: 10.2514/1.29456 · doi:10.2514/1.29456
[30] DOI: 10.1017/S0022112094004283 · Zbl 0813.76025 · doi:10.1017/S0022112094004283
[31] Ehrenstein, Fifth AIAA Theoretical Fluid Mechanics Conference (2008)
[32] DOI: 10.1098/rspa.2002.1116 · Zbl 1041.76026 · doi:10.1098/rspa.2002.1116
[33] DOI: 10.1002/rnc.657 · Zbl 1006.93010 · doi:10.1002/rnc.657
[34] Barbagallo, Fifth AIAA Theoretical Fluid Mechanics Conference (2008)
[35] DOI: 10.1146/annurev.fluid.39.050905.110153 · doi:10.1146/annurev.fluid.39.050905.110153
[36] DOI: 10.1016/S0168-9274(02)00116-2 · Zbl 1012.65136 · doi:10.1016/S0168-9274(02)00116-2
[37] DOI: 10.1115/1.3077635 · doi:10.1115/1.3077635
[38] DOI: 10.1063/1.1564095 · Zbl 1186.76283 · doi:10.1063/1.1564095
[39] DOI: 10.1017/S0022112008004394 · Zbl 1156.76374 · doi:10.1017/S0022112008004394
[40] Joshi, J. Fluid Mech. 332 pp 157– (1997)
[41] DOI: 10.1063/1.868529 · Zbl 1023.76521 · doi:10.1063/1.868529
[42] Antoulas, Contemp. Math. 280 pp 193– (2001) · doi:10.1090/conm/280/04630
[43] DOI: 10.1017/S0022112087002234 · Zbl 0639.76041 · doi:10.1017/S0022112087002234
[44] Zhou, Robust and Optimal Control (2002)
[45] Antoulas, Approximation of Large-Scale Dynamical Systems (2005) · Zbl 1112.93002 · doi:10.1137/1.9780898718713
[46] DOI: 10.1063/1.2840197 · Zbl 1182.76341 · doi:10.1063/1.2840197
[47] DOI: 10.1002/(SICI)1099-1239(199903)9:3&lt;183::AID-RNC399&gt;3.0.CO;2-E · Zbl 0949.93018 · doi:10.1002/(SICI)1099-1239(199903)9:3<183::AID-RNC399>3.0.CO;2-E
[48] DOI: 10.1137/S0895479899358194 · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[49] Ilak, Third AIAA Flow Control Conference (2006)
[50] DOI: 10.1007/BF00127673 · doi:10.1007/BF00127673
[51] DOI: 10.1017/S0022112007005496 · Zbl 1175.76049 · doi:10.1017/S0022112007005496
[52] DOI: 10.1017/S0022112003003823 · Zbl 1163.76353 · doi:10.1017/S0022112003003823
[53] DOI: 10.2514/2.1570 · doi:10.2514/2.1570
[54] DOI: 10.1017/S0022112005004210 · Zbl 1134.76354 · doi:10.1017/S0022112005004210
[55] DOI: 10.1016/S0376-0421(02)00030-1 · doi:10.1016/S0376-0421(02)00030-1
[56] DOI: 10.1063/1.2832773 · Zbl 1182.76313 · doi:10.1063/1.2832773
[57] DOI: 10.1016/j.euromechflu.2006.09.004 · Zbl 1150.76019 · doi:10.1016/j.euromechflu.2006.09.004
[58] Sirovich, Q. Appl. Math. 45 pp 561– (1987)
[59] DOI: 10.1017/S0962492902000120 · Zbl 1046.65021 · doi:10.1017/S0962492902000120
[60] DOI: 10.1017/S0022112007008907 · Zbl 1172.76318 · doi:10.1017/S0022112007008907
[61] DOI: 10.1007/s00348-006-0188-8 · doi:10.1007/s00348-006-0188-8
[62] Cattafesta, Prog. Aerosp. Sci. 44 pp 459– (2008) · doi:10.1016/j.paerosci.2008.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.