×

zbMATH — the first resource for mathematics

Wake-mediated synchronization and drafting in coupled flags. (English) Zbl 1183.76653
Summary: A recent experiment has shown ‘inverted drafting’ in flags: the drag force on one flag is increased by excitation from the wake of another. Here we use vortex sheet simulations to show that inverted drafting occurs when the flag wakes add coherently to form strong vortices. By contrast, normal drafting occurs for higher frequency oscillations, when the vortex wake becomes more complex and mixed on the scale of the flag. The types of drafting and dynamics (synchronization and erratic flapping) depend on the separation distance between the flags. For both tandem and side-by-side flags in synchronized flapping, the phase difference depends nearly monotonically on separation distance.

MSC:
76B47 Vortex flows for incompressible inviscid fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.jsv.2009.01.028 · doi:10.1016/j.jsv.2009.01.028
[2] Videler, Fish Swimming (1993) · doi:10.1007/978-94-011-1580-3
[3] DOI: 10.1103/PhysRevLett.101.194502 · doi:10.1103/PhysRevLett.101.194502
[4] Ralston, A First Course in Numerical Analysis (2001)
[5] DOI: 10.1016/S0020-7462(03)00090-8 · Zbl 1141.74327 · doi:10.1016/S0020-7462(03)00090-8
[6] DOI: 10.1126/science.168.3934.1003 · doi:10.1126/science.168.3934.1003
[7] DOI: 10.1017/S002211200800284X · Zbl 1151.74347 · doi:10.1017/S002211200800284X
[8] DOI: 10.1016/0021-9991(86)90210-X · Zbl 0591.76059 · doi:10.1016/0021-9991(86)90210-X
[9] Drucker, J. Exp. Biol. 204 pp 2943– (2001)
[10] DOI: 10.1017/S0022112007005563 · Zbl 1176.76044 · doi:10.1017/S0022112007005563
[11] Bisplinghoff, Principles of Aeroelasticity (2002)
[12] DOI: 10.1061/(ASCE)0733-9445(1996)122:7(716) · doi:10.1061/(ASCE)0733-9445(1996)122:7(716)
[13] Batchelor, An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[14] DOI: 10.1016/j.jfluidstructs.2003.10.001 · doi:10.1016/j.jfluidstructs.2003.10.001
[15] DOI: 10.1073/pnas.0408383102 · doi:10.1073/pnas.0408383102
[16] DOI: 10.1103/PhysRevLett.100.074301 · doi:10.1103/PhysRevLett.100.074301
[17] DOI: 10.1016/j.jcp.2008.12.020 · Zbl 1158.74015 · doi:10.1016/j.jcp.2008.12.020
[18] DOI: 10.1063/1.3000670 · Zbl 1182.76016 · doi:10.1063/1.3000670
[19] DOI: 10.1063/1.1582476 · Zbl 1186.76611 · doi:10.1063/1.1582476
[20] DOI: 10.1006/jcph.2002.7066 · Zbl 1130.76406 · doi:10.1006/jcph.2002.7066
[21] DOI: 10.1038/35048530 · doi:10.1038/35048530
[22] DOI: 10.1038/35099670 · doi:10.1038/35099670
[23] DOI: 10.1006/jfls.2001.0435 · doi:10.1006/jfls.2001.0435
[24] DOI: 10.1103/PhysRevLett.94.094302 · doi:10.1103/PhysRevLett.94.094302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.