zbMATH — the first resource for mathematics

The separating flow in a plane asymmetric diffuser with \(8.5^{\circ }\) opening angle: mean flow and turbulence statistics, temporal behaviour and flow structures. (English) Zbl 1183.76054
Summary: The flow in a plane asymmetric diffuser with an opening angle of \(8.5^{\circ}\) has been studied experimentally using time-resolving stereoscopic particle image velocimetry. The inlet condition is fully developed turbulent channel flow at a Reynolds number based on the inlet channel height and bulk velocity of \(Re = 38000\). All mean velocity and Reynolds stress components have been measured. A separated region is found on the inclined wall with a mean separation point at 7.4 and a mean reattachment point at 30.5 inlet channel heights downstream the diffuser inlet (the inclined wall ends 24.8 channel heights downstream the inlet). Instantaneous flow reversal never occurs upstream of five inlet channel heights but may occur far downstream the point of reattachment. A strong shear layer in which high rates of turbulence production are found is located in a region outside the separation. The static wall pressure through the diffuser is presented and used in an analysis of the balance between pressure forces and momentum change. It is demonstrated that production of turbulence causes a major part of the losses of mean flow kinetic energy. The character of the large turbulence structures is investigated by means of time-resolved sequences of velocity fields and spatial auto-correlation functions. Pronounced inclined structures are observed in the spanwise velocity and it is suggested that these are due to the legs of hairpin-like vortices.

76-05 Experimental work for problems pertaining to fluid mechanics
76F55 Statistical turbulence modeling
Full Text: DOI
[1] DOI: 10.1017/S0022112005008116 · Zbl 1222.76062 · doi:10.1017/S0022112005008116
[2] Obi, Second Intl Symp. on Turbulence, Heat and Mass Transfer pp 835– (1997)
[3] DOI: 10.1017/S0022112096003941 · Zbl 0900.76367 · doi:10.1017/S0022112096003941
[4] DOI: 10.1017/S0022112094002661 · doi:10.1017/S0022112094002661
[5] DOI: 10.1088/0957-0233/1/11/013 · doi:10.1088/0957-0233/1/11/013
[6] DOI: 10.1007/BF00384623 · doi:10.1007/BF00384623
[7] DOI: 10.1017/S0022112099005054 · Zbl 0983.76042 · doi:10.1017/S0022112099005054
[8] DOI: 10.1088/0957-0233/15/6/003 · doi:10.1088/0957-0233/15/6/003
[9] Johansson, Tech. Rep. (1981)
[10] DOI: 10.1115/1.483278 · doi:10.1115/1.483278
[11] DOI: 10.1016/j.ijheatfluidflow.2004.02.012 · doi:10.1016/j.ijheatfluidflow.2004.02.012
[12] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[13] DOI: 10.1007/s003489900087 · doi:10.1007/s003489900087
[14] DOI: 10.1007/s00348-005-0962-z · doi:10.1007/s00348-005-0962-z
[15] DOI: 10.1088/0957-0233/8/12/002 · doi:10.1088/0957-0233/8/12/002
[16] DOI: 10.1007/s00348-003-0696-8 · doi:10.1007/s00348-003-0696-8
[17] DOI: 10.1146/annurev.fl.21.010189.001225 · doi:10.1146/annurev.fl.21.010189.001225
[18] DOI: 10.1007/s003480070007 · doi:10.1007/s003480070007
[19] Raffel, Particle Image Velocimetry, A Practical Guide (1997)
[20] Obi, Engineering Turbulence Modelling and Experiments 2 pp 633– (1993) · doi:10.1016/B978-0-444-89802-9.50064-2
[21] Obi, Ninth Symp. on Turbulent Shear Flows (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.