×

zbMATH — the first resource for mathematics

A comparison of turbulent pipe, channel and boundary layer flows. (English) Zbl 1183.76036
Summary: The extent or existence of similarities between fully developed turbulent pipes and channels, and in zero-pressure-gradient turbulent boundary layers has come into question in recent years. This is in contrast to the traditionally accepted view that, upon appropriate normalization, all three flows can be regarded as the same in the near-wall region. In this paper, the authors aim to provide clarification of this issue through streamwise velocity measurements in these three flows with carefully matched Reynolds number and measurement resolution. Results show that mean statistics in the near-wall region collapse well. However, the premultiplied energy spectra of streamwise velocity fluctuations show marked structural differences that cannot be explained by scaling arguments. It is concluded that, while similarities exist at these Reynolds numbers, one should exercise caution when drawing comparisons between the three shear flows, even near the wall.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76F10 Shear flows and turbulence
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Perry, J. Fluid Mech. 468 pp 61– (2002)
[2] DOI: 10.1016/0376-0421(62)90014-3 · doi:10.1016/0376-0421(62)90014-3
[3] DOI: 10.1103/PhysRevLett.95.074501 · doi:10.1103/PhysRevLett.95.074501
[4] DOI: 10.1063/1.3006423 · Zbl 1182.76550 · doi:10.1063/1.3006423
[5] DOI: 10.1017/S002211200700777X · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[6] DOI: 10.1007/BF00191694 · doi:10.1007/BF00191694
[7] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[8] DOI: 10.1063/1.1344894 · Zbl 1184.76364 · doi:10.1063/1.1344894
[9] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[10] DOI: 10.1017/S0022112005005872 · Zbl 1119.76304 · doi:10.1017/S0022112005005872
[11] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[12] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[13] JimĂ©nez, J. Fluid Mech. 611 pp 215– (2008)
[14] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[15] DOI: 10.1017/S0022112006000814 · Zbl 1157.76346 · doi:10.1017/S0022112006000814
[16] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[17] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[18] DOI: 10.1017/S0022112098002419 · Zbl 0941.76510 · doi:10.1017/S0022112098002419
[19] DOI: 10.1017/S002211200600259X · Zbl 1104.76025 · doi:10.1017/S002211200600259X
[20] DOI: 10.1017/S0022112000001385 · Zbl 1004.76037 · doi:10.1017/S0022112000001385
[21] DOI: 10.1017/S0022112061000883 · Zbl 0127.42602 · doi:10.1017/S0022112061000883
[22] Theodorsen, Proceedings of Second Midwestern Conference on Fluid Mechanics. (1952)
[23] Tennekes, A First Course in Turbulence. (1972)
[24] DOI: 10.1063/1.1721601 · doi:10.1063/1.1721601
[25] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057 · doi:10.1017/S0022112082001311
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.