×

zbMATH — the first resource for mathematics

Analytical solution of electro-osmotic flow in a semicircular microchannel. (English) Zbl 1182.76812
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1146/annurev.fluid.36.050802.122124 · Zbl 1076.76076
[2] DOI: 10.1016/j.ijheatmasstransfer.2005.11.007 · Zbl 1189.76433
[3] R. F. Probstein, Physiochemical Hydrodynamics, 2nd ed. (Wiley, New York, 1994).
[4] DOI: 10.1021/j100895a062
[5] DOI: 10.1006/jcis.1999.6696
[6] DOI: 10.1016/S0927-7757(98)00259-3
[7] Y. L. Zhang, T. N. Wong, C. Yang, and K. T. Ooi, ”Electroosmotic flow in irregular shape microchannels,” Int. J. Eng. Sci.IJESAN0020-7225 43, 1450 (2005).
[8] X. C. Xuan and D. Q. Li, ”Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge,” J. Colloid Interface Sci.JCISA50021-9797 289, 291 (2005).
[9] L. B. W. Jolley, Summation of Series (Dover, New York, 1961). · Zbl 0101.28602
[10] DOI: 10.1016/j.bios.2004.05.003
[11] DOI: 10.1116/1.2131876
[12] DOI: 10.1017/S0022112005005720 · Zbl 1082.76115
[13] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965). · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.