×

zbMATH — the first resource for mathematics

Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. (English) Zbl 1182.76529
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. H. Hites, ”Scaling of high-Reynolds number turbulent boundary layers in the National Diagnostic Facility,” Ph.D. thesis, Illinois Institute of Technology, USA, 1997.
[2] J. M. Österlund, ”Experimental studies of zero pressure-gradient turbulent boundary layer flow,” Ph.D. thesis, Kungl Tekniska Högskolan, Sweden, 1999.
[3] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[4] DOI: 10.1063/1.1344894 · Zbl 1184.76364 · doi:10.1063/1.1344894
[5] Knobloch K., IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow pp 11– (2002)
[6] Nagib H. M., IUTAM Symposium on One Hundred Years of Boundary Layer Research pp 383– (2004)
[7] DOI: 10.1017/S0022112005004751 · Zbl 1156.76307 · doi:10.1017/S0022112005004751
[8] DOI: 10.1017/S0022112005007780 · doi:10.1017/S0022112005007780
[9] DOI: 10.1098/rsta.2006.1950 · Zbl 1152.76414 · doi:10.1098/rsta.2006.1950
[10] McKeon B., Philos. Trans. R. Soc. London, Ser. A 365 (2007)
[11] R. I. Karlsson, ”Studies of skin friction in turbulent boundary layers on smooth and rough walls,” Ph.D. thesis, Chalmers University of Technology, Sweden, 1980.
[12] R. W. Smith, ”Effect of Reynolds number on the structure of turbulent boundary layers,” Ph.D. thesis, Princeton University, USA, 1994.
[13] J. M. Bruns, ”Experimental investigation of a three-dimensional turbulent boundary layer in an ’S’-shaped duct,” Ph.D. thesis, Technische Universität Berlin, Germany, 1998.
[14] DOI: 10.1017/S0022112099005522 · Zbl 0944.76518 · doi:10.1017/S0022112099005522
[15] DOI: 10.1098/rsta.2006.1948 · Zbl 1152.76412 · doi:10.1098/rsta.2006.1948
[16] Coles D. E., Computation of Turbulent Boundary Layers-1968 AFOSR-IFP-Stanford Conference pp 1– (1968)
[17] DOI: 10.1063/1.870250 · Zbl 1149.76503 · doi:10.1063/1.870250
[18] DOI: 10.1115/1.1840903 · doi:10.1115/1.1840903
[19] DOI: 10.1098/rspa.1973.0128 · Zbl 0314.76062 · doi:10.1098/rspa.1973.0128
[20] Monkewitz P. A., IUTAM Symposium on One Hundred Years of Boundary Layer Research pp 355– (2004)
[21] Chauhan K. A., 45th AIAA Aerospace Sciences Meeting and Exhibit (2007)
[22] Nagib H. M., 4th AIAA Theoretical Fluid Mechanics Meeting (2005)
[23] Chauhan K. A., Progress in Turbulence 2. Proceedings of iTi Conference in Turbulence pp 159– (2007)
[24] DOI: 10.1017/S0022112056000135 · Zbl 0070.42903 · doi:10.1017/S0022112056000135
[25] Abramowitz M., Handbook of Mathematical Functions (1964) · Zbl 0171.38503
[26] DOI: 10.1016/0376-0421(95)00007-0 · doi:10.1016/0376-0421(95)00007-0
[27] Van Dyke M., Perturbation Methods in Fluid Mechanics (1964) · Zbl 0136.45001
[28] Musker A. J., AIAA J. 17 pp 655– (1979) · Zbl 0397.76053 · doi:10.2514/3.61193
[29] DOI: 10.1115/1.3641728 · Zbl 0098.17603 · doi:10.1115/1.3641728
[30] White F. M., Viscous Fluid Flow, 3. ed. (2006)
[31] DOI: 10.1007/978-3-642-85829-1 · doi:10.1007/978-3-642-85829-1
[32] Lewkowicz A. K., Z. Flugwiss. Weltraumforsch. 6 pp 261– (1982)
[33] DOI: 10.1017/S0022112004001788 · Zbl 1068.76040 · doi:10.1017/S0022112004001788
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.