×

zbMATH — the first resource for mathematics

On the high contraction ratio anomaly of axisymmetric contraction of grid-generated turbulence. (English) Zbl 1182.76234
Editorial remark: No review copy delivered.

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1146/annurev.fl.15.010183.001221 · doi:10.1146/annurev.fl.15.010183.001221
[2] DOI: 10.1093/qjmam/7.1.104 · Zbl 0055.19202 · doi:10.1093/qjmam/7.1.104
[3] DOI: 10.2514/8.3651 · doi:10.2514/8.3651
[4] DOI: 10.1017/S0022112066000338 · doi:10.1017/S0022112066000338
[5] DOI: 10.1017/S0022112075001176 · doi:10.1017/S0022112075001176
[6] DOI: 10.1115/1.3448210 · doi:10.1115/1.3448210
[7] DOI: 10.1115/1.3448386 · doi:10.1115/1.3448386
[8] DOI: 10.1063/1.862168 · doi:10.1063/1.862168
[9] DOI: 10.1017/S0022112080000766 · doi:10.1017/S0022112080000766
[10] Y. O. Han, ”The effect of contraction on grid generated turbulence,” Ph.D. thesis, State University of New York at Buffalo (1988).
[11] Leuchter O., Ninth Symposium on Turbulent Shear Flows (1993)
[12] DOI: 10.1017/S0022112098002511 · Zbl 0948.76546 · doi:10.1017/S0022112098002511
[13] DOI: 10.1017/S0022112006002199 · Zbl 1104.76005 · doi:10.1017/S0022112006002199
[14] Prandtl L., Handbuch der Experimentalphysik 4 pp 73– (1932)
[15] DOI: 10.1093/qjmam/7.1.83 · Zbl 0055.19201 · doi:10.1093/qjmam/7.1.83
[16] M. J. Lee, ”Numerical experiments on the structure of homogeneous turbulence,” Ph.D. thesis, Stanford University (1985).
[17] DOI: 10.1017/S0022112075001814 · Zbl 0301.76030 · doi:10.1017/S0022112075001814
[18] DOI: 10.1063/1.864876 · Zbl 0571.76056 · doi:10.1063/1.864876
[19] Ö. Ertunç, ”Experimental and numerical investigations of axisymmetric turbulence,” Ph.D. thesis, Friedrich Alexander Universität Erlangen-Nürnberg, LSTM-Erlangen (2007), http://www.opus.ub.uni-erlangen.de/opus/volltexte/2007/537/.
[20] DOI: 10.1016/B978-0-08-016621-6.50012-7 · doi:10.1016/B978-0-08-016621-6.50012-7
[21] DOI: 10.1088/0957-0233/14/7/301 · doi:10.1088/0957-0233/14/7/301
[22] Ertunç Ö., Eurotherm Seminar 74 Proceedings (2003)
[23] Bruun H. H., Hot-Wire Anemometry (1995)
[24] DOI: 10.2514/3.9680 · doi:10.2514/3.9680
[25] Uberoi M. S., Q. Appl. Math. 10 pp 375– (1953) · Zbl 0050.13802 · doi:10.1090/qam/51466
[26] Frenkiel F. N., Aeronaut. Q. 5 pp 1– (1954)
[27] DOI: 10.1088/0022-3735/1/11/310 · doi:10.1088/0022-3735/1/11/310
[28] DOI: 10.1017/S0022112083002487 · doi:10.1017/S0022112083002487
[29] DOI: 10.1017/S0022112090002889 · doi:10.1017/S0022112090002889
[30] DOI: 10.1017/S0022112095000929 · doi:10.1017/S0022112095000929
[31] DOI: 10.1109/TIM.1972.4314010 · doi:10.1109/TIM.1972.4314010
[32] Hinze J. O., Turbulence (1975)
[33] DOI: 10.1098/rspa.1946.0060 · Zbl 0061.45503 · doi:10.1098/rspa.1946.0060
[34] DOI: 10.1098/rsta.1950.0010 · Zbl 0037.40602 · doi:10.1098/rsta.1950.0010
[35] Townsend A. A., The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[36] Batchelor G. K., The Theory of Homogeneous Turbulence (1953) · Zbl 0053.14404
[37] DOI: 10.1017/S0022112078000294 · Zbl 0371.76047 · doi:10.1017/S0022112078000294
[38] DOI: 10.1017/S0022112077000585 · Zbl 0368.76055 · doi:10.1017/S0022112077000585
[39] DOI: 10.1017/CBO9780511840531 · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[40] DOI: 10.1063/1.1706861 · Zbl 0119.20607 · doi:10.1063/1.1706861
[41] DOI: 10.1017/S0022112090002919 · doi:10.1017/S0022112090002919
[42] DOI: 10.1017/S0022112007006763 · Zbl 1118.76008 · doi:10.1017/S0022112007006763
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.