zbMATH — the first resource for mathematics

3-D and 2-D dynamic Green’s functions and time-domain bies for piezoelectric solids. (English) Zbl 1182.74053
Summary: Dynamic Green’s functions for linear piezoelectric solids are derived by using Radon transform. Time-harmonic and Laplace transformed dynamic Green’s functions are obtained subsequently by applying the Fourier and the Laplace transform to the time-domain Green’s functions. Time-domain boundary integral equation formulations are presented for transient dynamic analysis of linear piezoelectric solids. In particular, hypersingular and non-hypersingular time-domain traction BIEs are derived by two different ways. Their potential application in transient dynamic crack analysis of three-dimensional and two-dimensional piezoelectric solids is discussed.

74F15 Electromagnetic effects in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
74R10 Brittle fracture
PDF BibTeX Cite
Full Text: DOI
[1] Akamatsu, M.; Tanuma, K., Green’s functions of anisotropic piezoelectricity, Proc R soc London A, 453, 473-487, (1998) · Zbl 0869.73064
[2] Barnett, D.M.; Lothe, J., Dislocations and line charges in anisotropic piezoelectric insulators, Physica status solidi B, 67, 105-111, (1975)
[3] Broida, J.; Williamson, S.G., A comprehensive introduction to linear algebra, (1989), Addison-Wesley California · Zbl 0683.15001
[4] Cady, W.G., Piezoelectricity, (1964), Dover Publishers New York
[5] Chen, T., Green’s functions and the non-uniform transformation problem in a piezoelectric medium, Mech res commun, 20, 271-278, (1993) · Zbl 0773.73077
[6] Chen, T.; Lin, F.Z., Boundary integral formulations for three-dimensional anisotropic piezoelectric solids, Comput mech, 15, 485-496, (1995) · Zbl 0826.73066
[7] Daros, H., Wave propagation in unbounded piezoelectric media of transversely isotropic symmetry, Braunschweig series on mechanics, (1999), 39
[8] Daros, H.; Antes, H., Dynamic fundamental solutions for transversely isotropic piezoelectric materials of crystal class 6mm, Int J solids struct, 37, 1639-1658, (2000) · Zbl 0991.74029
[9] Daros, H., A fundamental solutions for transversely isotropic, piezoelectric solids under electrically irrotational approximation, Mech res commun, 29, 61-71, (2002) · Zbl 1042.74012
[10] Daros, H., The elastic motion of a transversely isotropic, piezoelectric solid caused by impulsive loading, Z angew math phys (ZAMP), 51, 397-418, (2002) · Zbl 0982.74026
[11] Davi, G.; Milazzo, A., Multidomain boundary integral formulation for piezoelectric materials fracture mechanics, Int J solids struct, 38, 7065-7078, (2001) · Zbl 1058.74084
[12] Deans, S.R., The Radon transform and some of its applications, (1983), Wiley-Interscience Publication New York · Zbl 0561.44001
[13] Deeg WF. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. PhD dissertation, Stanford University; 1980.
[14] Denda, M.; Lua, J., Development of the boundary element method for 2D piezoelectricity, Composites: part B, 30, 699-707, (1999)
[15] Denda, M.; Araki, Y., Eigenvalue analysis by time-harmonic BEM for 2-D piezoelectricity: comparison of eigensolvers, () · Zbl 1124.74327
[16] Ding, H.J.; Liang, J.; Chen, B., Fundamental solutions for transversely isotropic piezoelectric media, Sci China (A), 39, 766-775, (1996) · Zbl 0867.35106
[17] Ding, H.J.; Wang, G.Q.; Chen, W.Q., Fundamental solutions for plane problem of piezoelectric materials, Sci China (E), 40, 331-336, (1997) · Zbl 0888.73048
[18] Ding, H.J.; Wang, G.Q.; Chen, W.Q., A boundary integral formulation and 2D fundamental solutions for piezoelectric media, Comput meth appl mech eng, 158, 65-80, (1998) · Zbl 0954.74077
[19] Ding, H.J.; Chi, Y.; Guo, F., Solutions for transversely isotropic piezoelectric infinite body, semi-infinite body and bimaterial infinite body subjected to uniform ring loading and charge, Int J solids struct, 36, 2613-2631, (1999) · Zbl 0938.74028
[20] Ding, H.J.; Liang, J., The fundamental solutions for transversely isotropic piezoelectricity and boundary element method, Comput struct, 71, 447-455, (1999)
[21] Ding, H.J.; Chen, W.Q.; Jiang, A.M., Green’s functions and boundary element method for transversely isotropic piezoelectric materials, Eng anal bound elem, 28, 975-987, (2004) · Zbl 1112.74550
[22] Dunn, M.L., Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems, Int J eng sci, 32, 119-131, (1994) · Zbl 0798.73046
[23] Dunn, M.L.; Wienecke, H.A., Green’s functions for transversely isotropic piezoelectric solids, Int J solids struct, 33, 4571-4581, (1996) · Zbl 0919.73293
[24] Gaul, L.; Kögl, M.; Wagner, M., Boundary element methods for engineers and scientists, (2003), Springer Berlin · Zbl 1068.74613
[25] Gross D, Dineva P, Rangelov Ts. Dynamic fracture behaviour of a multilayered piezoelectric solid. Research report, Institute of Mechanics. TU Darmstadt; 2002.
[26] Helgason, S., The Radon transform, (1980), Birkhauser Boston · Zbl 0453.43011
[27] Hill, L.R.; Farris, T.N., Three-dimensional piezoelectric boundary element method, Aiaa j, 36, 102-108, (1998) · Zbl 0908.73086
[28] Hill, L.R.; Farris, T.N., Piezoelectric boundary element crack closure calculation of 3D strain energy release rates, J intell mater syst struct, 9, 251-259, (1998)
[29] Jiang, L.Z., Integral representation and Green’s functions for 3-D time-dependent thermo-piezoelectricity, Int J solids struct, 37, 6155-6171, (2000) · Zbl 0963.74021
[30] Khutoryansky N, Sosa H. Dynamic representation formulas and fundamental solutions for piezoelectricity. Int J Solids Struct 1995;32:3307-3325. · Zbl 0866.73064
[31] Khutoryansky, N.; Sosa, H.; Zhu, W.H., Approximate Green’s functions and a boundary element method for electroelastic analysis of active materials, Comput struct, 66, 289-299, (1998) · Zbl 0933.74071
[32] Kögl, M.; Gaul, L., A boundary element method for transient piezoelectric analysis, Eng anal bound elem, 24, 591-598, (2000) · Zbl 1010.74075
[33] Lee, J.S.; Jiang, L.Z., A boundary integral formulation and 2D fundamental solution for piezoelectric media, Mech res commun, 21, 47-54, (1994) · Zbl 0801.73063
[34] Lee, J.S., Boundary element method for electroelastic interaction in piezoceramics, Eng anal bound elem, 15, 321-328, (1995)
[35] Lubich, C., Convolution quadrature and discretized operational calculus. I, Numerische Mathematik, 52, 129-145, (1988) · Zbl 0637.65016
[36] Lubich, C., Convolution quadrature and discretized operational calculus. II, Numerische Mathematik, 52, 413-425, (1988) · Zbl 0643.65094
[37] Ludwig, D., The Radon transform on Euclidean space, Commun pure appl math, 19, 49-81, (1966) · Zbl 0134.11305
[38] Ney, J.F., Physical properties of crystals, (1957), Clarendon Oxford
[39] Norris, N., Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelastic solids, Proc R soc London A, 447, 175-188, (1994) · Zbl 0813.73054
[40] Pan, E.; Tonon, F., Three-dimensional Green’s functions in anisotropic piezoelectric solids, Int J solids struct, 37, 943-958, (2000) · Zbl 0977.74025
[41] Pan, E., BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Eng anal bound elem, 23, 67-76, (1999) · Zbl 1062.74639
[42] Parton, V.Z.; Kudryavtsev, B.A., Electrocmagnetoelasticity, (1988), Gordon and Breach Science Publishers
[43] Rajapakse, R.K.N.D.; Xu, X.-L., Boundary element modeling of cracks in piezoelectric solids, Eng anal bound elem, 25, 771-781, (2001) · Zbl 1102.74333
[44] Ting, T.C.T., Anisotropic elasticity, (1996), Oxford University Press Oxford
[45] Tiersten, H.F., Linear piezoelectric plate vibrations, (1969), Plenum Press New York
[46] Wang, C.-Y.; Achenbach, J.D., A new method to obtain 3-D Green’s functions for anisotropic solids, Wave motion, 18, 273-289, (1993) · Zbl 0802.73016
[47] Wang, C.-Y.; Achenbach, J.D., Elastodynamic fundamental solutions for anisotropic solids, Geophys J int, 118, 384-392, (1994)
[48] Wang, C.-Y.; Achenbach, J.D., Three-dimensional time-harmonic elastodynamic Green’s functions for anisotropic solids, Proc R soc London A, 449, 441-458, (1995) · Zbl 0852.73011
[49] Wang C.-Y. Reciprocal theorem, boundary integral formulation, and Green’s tensors for 3D piezoelectrostatics in crystals of general anisotropy. Unpublished research notes, Dept. Civil Eng., Northwestern University; 1995.
[50] Wang, C.-Y., General formalism for piezoelectric crystals of general anisotropy, Appl math lett, 9, 4, 1-7, (1996)
[51] Xu, X.L.; Rajapakse, R.K., Boundary element analysis of piezoelectric solids with defects, Compos: part B: eng, 29, 655-669, (1998)
[52] Zhang, Ch., A novel derivation of non-hypersingular time-domain BIE formulation for transient elastodynamic crack analysis, Int J solids struct, 28, 267-281, (1991) · Zbl 0749.73063
[53] Zhang Ch. Transient dynamic analysis of cracked piezoelectric solids by a time-domain BIEM. In: Mang HA, Rammerstorfer FG, Eberhardsteiner J, editors. Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), July 7-12, 2002, Vienna, Austria, Austria: Vienna University of Technology, ISBN 3-9501554-0-6, http://wccm.tuwien.ac.at.
[54] Zhang, Ch.; Wang, C.-Y.; Hirose, S., A time-domain BIEM for dynamic crack analysis of a piezoelectric solid, (), 119-126
[55] Zhao, M.H.; Shen, Y.P.; Liu, G.N.; Liu, Y.J., Fundamental solutions for infinite transversely isotropic piezoelectric media, (), 45-54
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.