Noor, Muhammad Aslam Some iterative methods for solving nonlinear equations using homotopy perturbation method. (English) Zbl 1182.65079 Int. J. Comput. Math. 87, No. 1, 141-149 (2010). Summary: We use a new modified homotopy perturbation method to suggest and analyse a class of iterative methods for solving nonlinear equations. This new modification of the homotopy method is quite flexible. These new methods include the two-step Newton method as a special case. We show that these new methods are of fourth-order convergent method. Several examples are given to illustrate the efficiency and robustness of these methods. Cited in 19 Documents MSC: 65H05 Numerical computation of solutions to single equations Keywords:iterative method; convergence; numerical examples; homotopy perturbation method; two-step Newton method PDF BibTeX XML Cite \textit{M. A. Noor}, Int. J. Comput. Math. 87, No. 1, 141--149 (2010; Zbl 1182.65079) Full Text: DOI OpenURL References: [1] DOI: 10.1016/S0096-3003(03)00282-0 · Zbl 1032.65048 [2] DOI: 10.1016/j.amc.2006.11.136 · Zbl 1119.65032 [3] Burden, R. L. and Faires, J. D. 2001. ”Numerical Analysis”. Bostan: PWS Publishing Company. · Zbl 0671.65001 [4] DOI: 10.1016/j.camwa.2005.08.022 · Zbl 1086.65048 [5] DOI: 10.1016/j.amc.2005.04.043 · Zbl 1090.65053 [6] DOI: 10.1016/S0096-3003(01)00313-7 · Zbl 1023.65039 [7] He J. H., Int. J. Mod. Phys. 20 pp 1144– (2006) [8] He, J. H. 2006. ”Nonperturbative methods for strongly nonlinear problems”. Dissertation: de-Verlag im Intern Gmbh. [9] DOI: 10.1016/j.amc.2007.01.045 · Zbl 1122.65342 [10] DOI: 10.1016/j.amc.2006.05.084 · Zbl 1113.65051 [11] DOI: 10.1016/j.amc.2006.05.055 · Zbl 1113.65050 [12] DOI: 10.1016/j.amc.2007.02.036 · Zbl 1122.65341 [13] DOI: 10.1016/j.amc.2006.11.023 · Zbl 1119.65038 [14] Traub, J. F. 1964. ”Iterative Methods for Solution of Equations”. Englewood Cliffs, NJ: Prentice-Hall. · Zbl 0121.11204 [15] DOI: 10.1016/j.amc.2005.01.124 · Zbl 1091.65044 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.