Abuhlail, Jawad Y. A Zariski topology for bicomodules and corings. (English) Zbl 1182.16025 Appl. Categ. Struct. 16, No. 1-2, 13-28 (2008). This paper is a continuation of the study of fully coprime comodules. The author in this paper introduces and investigates top (bi)comodules of corings, which can be regarded as dual to top (bi)modules of rings. First, the author defines the fully coprime spectra of such (bi)comodules in a way dual to the definition of the Zariski topology on the prime spectra of (commutative) rings, and studies the interplay between the coalgebraic properties of such (bi)comodules and the introduced Zariski topology. Then, some applications and examples are given. The main application is to non-zero corings which turn out to be duo bicomodules in a canonical way. It is worth mentioning that several properties of the Zariski topology for bicomodules and corings are dual to those of the classical Zariski topolgy on the prime spectrum of commutative rings. Reviewer: Zhang Liangyun (Nanjing) Cited in 6 Documents MSC: 16T15 Coalgebras and comodules; corings 16N60 Prime and semiprime associative rings 16W80 Topological and ordered rings and modules 16D25 Ideals in associative algebras Keywords:fully coprime corings; fully coprime comodules; fully coprime coradicals; simple corings; simple comodules; categories of comodules; fully invariant comodules; fully coprime bicomodules; fully cosemiprime bicomodules; fully cosemiprime corings; fully coprime spectra; Zariski topologies; top bicomodules PDF BibTeX XML Cite \textit{J. Y. Abuhlail}, Appl. Categ. Struct. 16, No. 1--2, 13--28 (2008; Zbl 1182.16025) Full Text: DOI arXiv OpenURL References: [1] Abuhlail, J.Y.: Fully coprime comodules and fully coprime corings. Appl. Categ. Structures 14(5–6), 379–409 (2006) · Zbl 1121.16030 [2] Abuhlail, J.Y.: Rational modules for corings. Comm. Algebra 31, 5793–5840 (2003) · Zbl 1040.16023 [3] Atiyah M., Macdonald, I.: Introduction to Commutative Algebra. Addison-Wesley, Reading, MA (1969) · Zbl 0175.03601 [4] Annin, S.: Associated and attached primes over noncommutative rings. Ph.D. Dissertation, University of California at Berkeley (2002) · Zbl 1010.16025 [5] Bican, L., Jambor, P., Kepka, T., Nĕmec, P.: Prime and coprime modules. Fund. Math. 107(1), 33–45 (1980) · Zbl 0354.16013 [6] Bourbaki, N.: Commutative Algebra. Springer, Berlin (1998) · Zbl 1101.13300 [7] Bourbaki, N. General Topology, Part I. Addison-Wesley, Reading, MA (1966) · Zbl 0145.19302 [8] Brzezinski, T., Wisbauer, R.: Corings and comodules. London Mathematical Society Lecture Note Series, vol. 309. Cambridge University Press, Cambridge, MA (2003) · Zbl 1035.16030 [9] Faith, C.: Algebra II, Ring Theory. Springer, Berlin (1976) · Zbl 0335.16002 [10] Lu, C.-P.: The Zariski topology on the prime spectrum of a module. Houston J. Math. 25(3), 417–432 (1999) · Zbl 0979.13005 [11] McCasland, R., Moore, M., Smith, P.: On the spectrum of a module over a commutative ring. Comm. Algebra 25, 79–103 (1997) · Zbl 0876.13002 [12] Nekooei, R., Torkzadeh, L.: Topology on coalgebras. Bull. Iranian Math. Soc. 27(2), 45–63 (2001) · Zbl 1012.16041 [13] Raggi, F., Ríos Montes, J., Wisbauer, R.: Coprime preradicals and modules. J. Pure Appl. Algebra 200, 51–69 (2005) · Zbl 1073.16019 [14] Wijayanti, I.: Coprime modules and comodules. Ph.D. Dissertation, Heinrich-Heine Universität, Düsseldorf (2006) [15] Wisbauer, R.: Foundations of Module and Ring Theory. A Handbook for Study and Research. Gordon and Breach, New York (1991) · Zbl 0746.16001 [16] Zimmermann-Huisgen, B.: Pure submodules of direct products of free modules. Math. Ann. 224, 233–245 (1976) · Zbl 0331.16022 [17] Zhang, G.: Spectra of modules over any ring. Nanjing Univ. J. Math. Biquarterly 16(1), 42–52 (1999) · Zbl 0978.16004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.