×

zbMATH — the first resource for mathematics

A strong coupling partitioned approach for fluid–structure interaction with free surfaces. (English) Zbl 1181.76147
Summary: Fluid–structure interaction (FSI) problems are of great relevance to many fields in engineering and applied sciences. One wide spread and complex FSI-subclass is the category that studies the instationary behavior of incompressible viscous flows and thin-walled structures exhibiting large deformations. Free surfaces often present an essential additional challenge for this class of problems. Prominent application areas are fluid sloshing in tanks and numerable problems in offshore engineering and naval architecture. Especially when partitioned strong coupling schemes are used in order to solve the coupled FSI problem the design of an appropriate overall computational approach including free surface effects is not trivial. In this paper a new so-called partitioned implicit free surface approach is introduced and embedded into a strong coupling FSI solver. For complex problem classes this approach is combined with the general elevation equation that is closed through a dimensionally reduced pseudo-structural approach. The presented approach shows the same stability properties as a full implicit approach but is by far more efficient–especially in the partitioned coupled case.

MSC:
76T99 Multiphase and multicomponent flows
PDF BibTeX Cite
Full Text: DOI
References:
[1] Mok, D.P.; Wall, W.A., Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, (), 689-698
[2] Wall, W.A.; Ramm, E., A coupled fluid structure environment with a three-dimensional shell model, () · Zbl 1060.74572
[3] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Int phys fluids, 8, 2182-2189, (1965) · Zbl 1180.76043
[4] Harlow, F.H.; Welch, J.E., Numerical study of large-amplitude free surface motions, Int phys fluids, 9, 842-851, (1966)
[5] Hirt, C.W.; Nichols, B.D., Volume of fluid method for the dynamics of free surface boundaries, Comput phys, 39, 210-225, (1981) · Zbl 0462.76020
[6] Hirt, C.W.; Cook, J.L.; Butler, T.D., A Lagrangian method for calculating the dynamics of an incompressible fluid with free surfaces, J comput phys, 5, 103-124, (1970) · Zbl 0194.57704
[7] Ramaswamy, B.; Kawahara, M., Lagrangian finite element analysis applied to viscous free surface fluid flow, Int J numer methods fluids, 7, 953-984, (1987) · Zbl 0622.76031
[8] Radovitzky, R.; Ortiz, M., Lagrangian finite element analysis of Newtonian fluid flows, Int J numer methods engrg, 43, 607-619, (1998) · Zbl 0945.76047
[9] Hughes, T.J.R.; Lui, W.K.; Zimmermann, T.K., Lagrangian – eulerian finite element formulation for incompressible viscous flows, Comput methods appl mech engrg, 29, 329-349, (1981) · Zbl 0482.76039
[10] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary lagrangian – eulerian computing method for all flow speeds, J comput phys, 14, 227-253, (1974) · Zbl 0292.76018
[11] Oñate E, García J. Finite element analysis of incompressible flows with free surface waves using a finite calculus formulation. In: ECCOMAS computational fluid dynamic conference 2001, Swansea, Wales, UK, 4-7 September 2001.
[12] Navti, S.E.; Ravindran, K.; Taylor, C.; Lewis, R.W., Finite element modelling of surface tension effects using a lagrangian – eulerian kinematic description, Comput methods appl mech engrg, 147, 41-60, (1997) · Zbl 0901.76034
[13] Soulaimani, A.; Saad, Y., An arbitrary lagrangian – eulerian finite element method for solving three-dimensional free surface flows, Comput methods appl mech engrg, 147, 79-106, (1998) · Zbl 0948.76043
[14] Tezduyar, T.E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space – time procedure: I. the concept and the preliminary numerical tests, Comput methods appl mech engrg, 94, 339-351, (1992) · Zbl 0745.76044
[15] Tezduyar, T.E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space – time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput methods appl mech engrg, 94, 353-371, (1992) · Zbl 0745.76045
[16] Mittal, S.; Tezduyar, T.E., A finite element study of incompressible flows past oscillating cylinders and airfoils, Int J numer methods fluids, 15, 1073-1118, (1992)
[17] Mittal, S.; Tezduyar, T.E., Parallel finite element simulation of 3D incompressible flows—fluid – structure interaction, Int J numer methods fluids, 21, 933-953, (1995) · Zbl 0873.76047
[18] Felippa, C.A.; Park, K.C.; DeRuntz, J.A., Stabilization of staggered solution procedures for fluid – structure interaction analysis, (), 95-124 · Zbl 0389.76002
[19] Kalro, V.; Tezduyar, T., A parallel 3D computational method for fluid – structure interactions in parachute systems, Comput methods appl mech engrg, 190, 321-332, (2000) · Zbl 0993.76044
[20] Le Tallec, P.; Mouro, J., Fluid structure interaction with large structural displacements, Comput methods appl mech engrg, 190, 3039-3068, (2001) · Zbl 1001.74040
[21] Oñate, E.; García, J., A finite element method for fluid – structure interaction with surface waves using a finite calculus formulation, Comput methods appl mech engrg, 191, 635-660, (2001) · Zbl 0996.76052
[22] Tezduyar, T.E., Finite element methods for flow problems with moving boundaries and interfaces, Arch comput methods engrg, 8, 83-130, (2001) · Zbl 1039.76037
[23] Tezduyar, T.E.; Behr, M.; Mittal, S.; Johnson, A., A computation of unsteady incompressible flows with the stabilized finite element methods—space – time formulations, iterative strategies and massively parallel implementations, (), 7-24
[24] Farhat, C.; Degand, C.; Koobus, B.; Leosinne, M., Torsional springs for two dimensional dynamic unstructured fluid meshes, Comput methods appl mech engrg, 163, 231-245, (1998) · Zbl 0961.76070
[25] Slikkerveer, E.; van Lohuizen, P.; O’Brien, S.B.G., An implicit surface tension algorithm for Picard solvers of surface-tension-dominated free and moving boundary problems, Int J numer methods fluids, 22, 851-865, (1996) · Zbl 0865.76042
[26] Wall WA. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. Ph.D. Dissertation, Bericht Nr. 31, Institut für Baustatik, Universität Stuttgart 1999.
[27] Behr, M.; Abraham, F., Free-surface flow simulations in the presence of inclined walls, Comput methods appl mech engrg, 191, 5467-5483, (2002) · Zbl 1083.76549
[28] Tezduyar, T.E., Finite element methods for fluid dynamics with moving boundaries and interfaces, (), [Chapter 17] · Zbl 0848.76036
[29] Sackinger, P.A.; Schunk, P.R.; Rao, R.R., A newton – raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation, J comput phys, 125, 83-103, (1996) · Zbl 0853.65138
[30] Cairncross, R.A.; Schunk, P.R.; Baer, T.A.; Rao, R.R.; Sackinger, P.A., A finite element method for free surface flows of incompressible fluids in three dimensions. part I. boundary fitted mesh motion, Int J numer methods fluids, 125, 375-403, (2000) · Zbl 0989.76043
[31] Gresho, P.M.; Sani, R.L., Incompressible flow and the finite element method, (1998), John Wiley New York · Zbl 0941.76002
[32] Laitone, E.V., The second approximation to cnoidal and solitary waves, J fluid mech, 9, 430-444, (1960) · Zbl 0095.22302
[33] Ramaswamy, B., Numerical simulation of unsteady viscous free surface flow, J comput phys, 90, 396-430, (1990) · Zbl 0701.76036
[34] Martin, J.C.; Moyce, W.J., An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos trans R soc lond A, math phys sci, 244, 312-324, (1952)
[35] Mok DP. Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. Ph.D. Dissertation, Bericht Nr. 36, Institut für Baustatik, Universität Stuttgart 2001.
[36] Wall WA, Mok DP, Ramm E. Partitioned analysis approach for the transient, coupled response of viscous fluids and flexible structures. In ECCM’99—Proc. European conference on computational mechanics, Munich, Germany, August 31-September 3, 1999.
[37] Wall, W.A.; Mok, D.P.; Schmidt, J.; Ramm, E., Partitioned analysis of transient nonlinear fluid structure interaction problems including free surface effects, (), 159-166 · Zbl 1015.74062
[38] Irons, B.; Tuck, R.C., A version of the aitken accelerator for computer implementation, Int J numer methods engrg, 1, 275-277, (1969) · Zbl 0256.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.