×

zbMATH — the first resource for mathematics

Global linear stability of the non-parallel Batchelor vortex. (English) Zbl 1181.76068
Summary: Linear stability of the non-parallel Batchelor vortex is studied using global modes. This family of swirling wakes and jets has been extensively studied under the parallel-flow approximation, and in this paper we extend to more realistic non-parallel base flows. Our base flow is obtained as an exact steady solution of the Navier-Stokes equations by direct numerical simulation (with imposed axisymmetry to damp all instabilities). Global stability modes are computed by numerical simulation of the linearized equations, using the implicitly restarted Arnoldi method, and we discuss fully the numerical and convergence issues encountered. Emphasis is placed on exploring the general structure of the global spectrum, and in particular the correspondence between global modes and local absolute modes which is anticipated by weakly non-parallel asymptotic theory. We believe that our computed global modes for a weakly non-parallel vortex are the first to display this correspondence with local absolute modes. Superpositions of global modes are also studied, allowing an investigation of the amplifier dynamics of this unstable flow. For an illustrative case we find global non-modal transient growth via a convective mechanism. Generally amplifier dynamics, via convective growth, are prevalent over short time intervals, and resonator dynamics, via global mode growth, become prevalent at later times.

MSC:
76E09 Stability and instability of nonparallel flows in hydrodynamic stability
76E15 Absolute and convective instability and stability in hydrodynamic stability
76D17 Viscous vortex flows
76M20 Finite difference methods applied to problems in fluid mechanics
Software:
ARPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112002008054 · Zbl 1060.76031
[2] DOI: 10.1017/S0022112003004749 · Zbl 1080.76024
[3] DOI: 10.1063/1.870045 · Zbl 1147.76469
[4] DOI: 10.1146/annurev.fluid.37.061903.175810 · Zbl 1117.76027
[5] DOI: 10.1017/S0022112002008029 · Zbl 1068.76030
[6] DOI: 10.1017/S0022112008001109 · Zbl 1151.76470
[7] DOI: 10.1017/S0022112007005903 · Zbl 1115.76029
[8] DOI: 10.1017/S0022112064001446 · Zbl 0151.40401
[9] DOI: 10.1017/S0022112008002528 · Zbl 1147.76026
[10] DOI: 10.1017/S0022112007005496 · Zbl 1175.76049
[11] DOI: 10.1063/1.3068758 · Zbl 1183.76386
[12] DOI: 10.1016/j.euromechflu.2007.09.004 · Zbl 1147.76025
[13] DOI: 10.1063/1.869534 · Zbl 1185.76827
[14] DOI: 10.1017/S0022112092000363 · Zbl 0825.76250
[15] DOI: 10.1017/S0022112008001377 · Zbl 1154.76024
[16] DOI: 10.1017/S0022112008000736 · Zbl 1151.76473
[17] DOI: 10.1017/S0022112008000323 · Zbl 1191.76053
[18] DOI: 10.1017/S0022112008004023 · Zbl 1165.76337
[19] DOI: 10.1017/S0022112074002175 · Zbl 0277.76041
[20] DOI: 10.1017/S0022112083000191 · Zbl 0519.76022
[21] DOI: 10.1146/annurev.fl.10.010178.001253
[22] Lehoucq, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (1998) · Zbl 0901.65021
[23] DOI: 10.1017/S002211200700660X · Zbl 1123.76014
[24] DOI: 10.1017/S0022112091002021 · Zbl 0721.76032
[25] Huerre, Hydrodynamics and Nonlinear Instabilities pp 81– (1998)
[26] DOI: 10.1146/annurev.fl.22.010190.002353
[27] Huerre, Perspectives in Fluid Dynamics: A Collective Introduction to Current Research pp 159– (2000)
[28] DOI: 10.1146/annurev.fluid.29.1.245
[29] DOI: 10.1017/S0022112007007434 · Zbl 1141.76372
[30] DOI: 10.1017/S0022112007008634 · Zbl 1128.76018
[31] DOI: 10.1017/S0022112006004447 · Zbl 1124.76009
[32] DOI: 10.1017/S0022112008004084 · Zbl 1159.76062
[33] DOI: 10.1017/S0022112003007353 · Zbl 1059.76021
[34] DOI: 10.1017/S0022112005005112 · Zbl 1073.76027
[35] DOI: 10.1063/1.870361 · Zbl 1149.76595
[36] DOI: 10.1016/j.euromechflu.2006.01.001 · Zbl 1106.76030
[37] DOI: 10.1017/S0022112085002154 · Zbl 0586.76093
[38] DOI: 10.1017/S0022112097007787 · Zbl 0905.76030
[39] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003
[40] DOI: 10.1103/PhysRevLett.78.4387
[41] DOI: 10.1146/annurev.fluid.38.050304.092139
[42] DOI: 10.1006/jcph.2002.7187 · Zbl 1058.76580
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.