×

zbMATH — the first resource for mathematics

Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. (English) Zbl 1181.76031

MSC:
76A20 Thin fluid films
76A05 Non-Newtonian fluids
76A10 Viscoelastic fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zhaosheng, Y., Jianzhong, L.: Numerical research on the coherent structure in the viscoelastic second order mixing layers. Appl. Math. Mech. 19, 671–677 (1998) · Zbl 0918.76059
[2] Fetecau, C., Fetecau, C.: The Raleigh-Stokes problem for a fluid of Maxwellian type. Int. J. Non-Linear Mech. 38, 603–607 (2003) · Zbl 1287.76042
[3] Fetecau, C., Fetecau, C.: Decay of a potential vortex in a Maxwell fluid. Int. J. Non-Linear Mech. 38, 985–990 (2003) · Zbl 1287.76043
[4] Fetecau, C., Fetecau, C.: Starting solutions for some unsteady unidirectional flows of a second grade fluid. Int. J. Eng. Sci. 43, 781–789 (2005) · Zbl 1211.76032
[5] Ayub, M., Rasheed, A., Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method. Int. J. Eng. Sci. 41, 2091–2103 (2003) · Zbl 1211.76076
[6] Hayat, T., Khan, M., Ayub, M.: On the explicit analytic solutions of an Oldroyd 6-constant fluid. Int. J. Eng. Sci. 42, 123–135 (2004) · Zbl 1211.76009
[7] Hayat, T., Khan, M., Ayub, M.: Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field. J. Math. Anal. Appl. 298, 225–244 (2004) · Zbl 1067.35074
[8] Fetecau, C., Fetecau, C.: A new exact solution for the flow of Maxwell fluid past an infinite plate. Int. J. Non-Linear Mech. 38, 423–427 (2003) · Zbl 1287.76041
[9] Tan, W.C., Masuoka, T.: Stokes first problem for second grade fluid in a porous half space. Int. J. Non-Linear Mech. 40, 515–522 (2005) · Zbl 1349.76830
[10] Siddiqui, A.M., Ahmed, M., Ghori, Q.K.: Thin film flow of non-Newtonian fluids on a moving belt. Chaos Solitons Fractals (2006) in press · Zbl 1129.76009
[11] Liao, S.J.: On the proposed homotopy analysis technique for nonlinear problems and its applications, Ph.D. dissertation, Shanghai Jio Tong University, Shanghai, China (1992)
[12] Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton, FL (2003)
[13] Lyapunov, A.M.: General Problem on Stability of Motion. Taylors & Francis, London (1992) (English translation) · Zbl 0786.70001
[14] Karmishin, A.V., Zhukov, A.T., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-Walled Structures. Mashinostroyenie, Moscow (1990) (In Russian)
[15] Adomian, G.: Nonlinear stochastic differential equations. J. Math. Anal. Appl. 55, 441–452 (1976) · Zbl 0351.60053
[16] Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999) · Zbl 0931.76017
[17] Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002) · Zbl 1007.76014
[18] Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003) · Zbl 1063.76671
[19] Liao, S.J., Cheung, K.F.: Homotopy analysis of nonlinear progressive waves in deep water. J. Eng. Math. 45, 105–116 (2003) · Zbl 1112.76316
[20] Hayat, T., Khan, M., Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta Mech. 168, 213–232 (2004) · Zbl 1063.76108
[21] Liao, S.J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Trans. 48, 2529–2539 (2005) · Zbl 1189.76142
[22] Liao, SJ.: An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate. Comm. Non-Linear Sci. Num. Simm. 11, 326–339 (2006) · Zbl 1078.76022
[23] Wu, W., Liao, S.J.: Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos Solitons Fractals 26, 177–185 (2005) · Zbl 1071.76009
[24] Wu, Y.Y., Wang, C., Liao, S.J.: Solving the one loop solution of the Vakhnenko equation by means of the homotopy analysis method. Chaos Solitons Fractals 23, 1733–1740 (2005) · Zbl 1069.35060
[25] Sajid, M., Hayat, T., Asghar, S.: On the analytic solution of steady flow of a fourth grade fluid. Phys. Lett. A 355, 18–24 (2006)
[26] He, J.H.: An approximation sol. technique depending upon an artificial parameter. Comm. Nonlinear Sci. Num. Simul. 3, 92–97 (1998) · Zbl 0921.35009
[27] Fitzpatrick, P.M.: Advanced Calculus. PWS Publishing Company, Boston, MA (1996) · Zbl 1229.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.