×

Modeling inter-subject variability in fMRI activation location: a Bayesian hierarchical spatial model. (English) Zbl 1181.62099

Summary: The aim of this article is to develop a spatial model for multi-subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi-subject data, some work on spatial modeling of single-subject data, and some recent work on spatial modeling of multi-subject data. However, there has been no work on spatial models that explicitly account for inter-subject variability in activation locations.
We use the idea of activation centers and model the inter-subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical framework which allows us to draw inferences at all levels: the population level, the individual level, and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question that is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass-univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data.

MSC:

62H35 Image analysis in multivariate analysis
62F15 Bayesian inference
92C55 Biomedical imaging and signal processing
65C40 Numerical analysis or methods applied to Markov chains
62H11 Directional data; spatial statistics
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Beckman, Tensorial extensions of independent component analysis for multisubject fMRI analysis, Neuroimage 25 pp 294– (2005) · doi:10.1016/j.neuroimage.2004.10.043
[2] Botvinick, Conflict monitoring and cognitive control, Psychological Review 108 pp 624– (2001) · doi:10.1037/0033-295X.108.3.624
[3] Bowman, A Bayesian hierarchical framework for spatial modeling of fMRI data, Neuroimage 39 pp 146– (2008) · doi:10.1016/j.neuroimage.2007.08.012
[4] Cosman, Exact map activity detection in fMRI using a GLM with an Ising spatial prior, In Proc. MICCAI’04 2 pp 703– (2004)
[5] Descombes, Spatio-temporal fMRI analysis using Markov random fields, IEEE Transactions on Medical Imaging 17 pp 1028– (1998) · doi:10.1109/42.746636
[6] Fernandez, Modelling spatially correlated data via mixtures: A Bayesian approach, Journal of the Royal Statistical Society, Series B 64 pp 805– (2002) · Zbl 1067.62029 · doi:10.1111/1467-9868.00362
[7] Flandin, Bayesian fMRI data analysis with sparse spatial basis function priors, NeuroImage 34 pp 1108– (2007) · doi:10.1016/j.neuroimage.2006.10.005
[8] Friston, Assessing the significance of focal activations using their spatial extent, Human Brain Mapping 1 pp 210– (1993) · doi:10.1002/hbm.460010306
[9] Friston, Analysis of fMRI time-series revisited, NeuroImage 2 pp 45– (1995) · doi:10.1006/nimg.1995.1007
[10] Genovese, Thresholding of statistical maps in functional neuroimaging using the false discovery rate, NeuroImage 15 pp 870– (2002) · doi:10.1006/nimg.2001.1037
[11] Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 pp 711– (1995) · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[12] Hartvig, A stochastic geometry model for functional magnetic resonance images, Board of the Foundation of the Scandinavian Journal of Statistics 29 pp 333– (2002) · Zbl 1036.62099 · doi:10.1111/1467-9469.00294
[13] Hartvig, Spatial mixture mixture modelling of fMRI data, Human Brain Mapping 11 pp 233– (2000) · doi:10.1002/1097-0193(200012)11:4<233::AID-HBM10>3.0.CO;2-F
[14] Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 pp 97– (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[15] Johnson, Analysis of pulsatile hormone concentration profiles with nonconstant basal concentration: A Bayesian approach, Biometrics 63 pp 1207– (2007) · Zbl 1136.62079 · doi:10.1111/j.1541-0420.2007.00809.x
[16] Jonides, Brain mechanisms of proactive interference in working memory, Neuroscience 139 pp 181– (2006) · doi:10.1016/j.neuroscience.2005.06.042
[17] Lukic, Bayesian kernel methods for analysis of functional neuroimages, IEEE Transactions on Medical Imaging 26 pp 1613– (2007) · doi:10.1109/TMI.2007.896934
[18] Morosan, Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system, NeuroImage 13 pp 684– (2001) · doi:10.1006/nimg.2000.0715
[19] Nee, Neural mechanisms of proactive interference-resolution, NeuroImage 38 pp 740– (2007) · doi:10.1016/j.neuroimage.2007.07.066
[20] Nichols, Controlling the familywise error rate in functional neuroimaging: A comparative review, Statistical Methods in Medical Research 12 pp 419– (2003) · Zbl 1121.62645 · doi:10.1191/0962280203sm341ra
[21] Penny, Bayesian fMRI time series analysis with spatial priors, NeuroImage 24 pp 350– (2005) · doi:10.1016/j.neuroimage.2004.08.034
[22] Penny, Bayesian comparison of spatially regularized general linear models, Human Brain Mapping 28 pp 275– (2007) · doi:10.1002/hbm.20327
[23] Polzehl, Functional and dynamic magnetic resonance imaging using vector adaptive weights smoothing, Applied Statistics 50 pp 485– (2001) · Zbl 1112.62323
[24] Richardson, On Bayseian analysis of mixtures with an unknown number of components (with discussion), Journal of Royal Statistical Society, Series B 59 pp 731– (1997) · doi:10.1111/1467-9868.00095
[25] Tabelow, Analyzing fMRI experiments with structural adaptive smoothing procedures, NeuroImage 33 pp 55– (2006) · doi:10.1016/j.neuroimage.2006.06.029
[26] Wagner, Contributions to episodic memory retrieval, Trends in Cognitive Science 9 pp 445– (2005) · doi:10.1016/j.tics.2005.07.001
[27] Woolrich, Mixture models with adaptive spatial regularisation for segmentation with an application to fMRI data, IEEE Transactions on Medical Imaging 24 pp 1– (2005) · doi:10.1109/TMI.2004.836545
[28] Worsley, A unified statistical approach for determining significant signals in images of cerebral activation, Human Brain Mapping 4 pp 58– (1996) · doi:10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.