×

zbMATH — the first resource for mathematics

Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. (English) Zbl 1180.92057
Summary: We present a stochastic dynamical model for the transmission of dengue that takes into account seasonal and spatial dynamics of the vector Aedes aegypti. It describes disease dynamics triggered by the arrival of infected people in a city. We show that the probability of an epidemic outbreak depends on seasonal variation in temperature and on the availability of breeding sites. We also show that the arrival date of an infected human in a susceptible population dramatically affects the distribution of the final size of epidemics and that early outbreaks have a low probability. However, early outbreaks are likely to produce large epidemics because they have a longer time to evolve before the winter extinction of vectors. Our model could be used to estimate the risk and final size of epidemic outbreaks in regions with seasonal climatic variations.

MSC:
92C60 Medical epidemiology
92D30 Epidemiology
60G99 Stochastic processes
60J99 Markov processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Hunt, Microbiology and Immunology On-line, University of South Carolina, School of Medicine, South Carolina, United States, 2007, Available from <http://www.med.sc.edu:85/mhunt/arbo.htm>.
[2] WHO, Dengue hemorrhagic fever, in: Diagnosis Treatment Prevention and Control, second ed., World Health Organization, Ginebra, Suiza, 1998.
[3] N. Schweigmann, R. Boffi, Aedes aegypti y aedes albopictus: Situación entomológica en la región, in: Temas de Zoonosis y Enfermedades Emergentes, Segundo Cong. Argent. de Zoonosis y Primer Cong. Argent. y Lationoamer. de Enf. Emerg. y Asociación Argentina de Zoonosis, Buenos Aires, 1998, p. 259.
[4] de Garı´n, A.B.; Bejarán, R.A.; Carbajo, A.E.; de Casas, S.C.; Schweigmann, N.J., Atmospheric control of aedes aegypti populations in Buenos Aires (Argentina) and its variability, International journal of biometerology, 44, 148, (2000)
[5] Carbajo, A.E.; Schweigmann, N.; Curto, S.I.; de Garı´n, A.; Bejarán, R., Dengue transmission risk maps of Argentina, Tropical medicine and international health, 6, 3, 170, (2001)
[6] Seijo, A., Situación del dengue en la Argentina, Boletín de la asociación Argentina de microbiología, 175, 1, (2007)
[7] Newton, E.A.C.; Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ulv) insecticide applications on dengue epidemics, American journal of tropical medicinal hygiene, 47, 709, (1992)
[8] Esteva, L.; Vargas, C., Analysis of a dengue disease transmission model, Mathematical biosciences, 150, 131, (1998) · Zbl 0930.92020
[9] Esteva, L.; Vargas, C., A model for dengue disease with variable human population, Journal of mathematical biology, 38, 220, (1999) · Zbl 0981.92016
[10] Esteva, L.; Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease, Mathematical biosciences, 167, 51, (2000) · Zbl 0970.92011
[11] Bartley, L.M.; Donnelly, C.A.; Garnett, G.P., The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms, Transactions of the royal society of tropical medicine and hygiene, 96, 387, (2002)
[12] Pongsumpun, P.; Tang, I.M., Transmission of dengue hemorrhagic fever in an age structured population, Mathematical and computer modelling, 37, 949, (2003) · Zbl 1045.92040
[13] Derouich, M.; Boutayeb, A.; Twizell, E.H., A model of dengue fever, Biomedical engineering online, 2, 4, (2003)
[14] Tran, A.; Raffy, M., On the dynamics of dengue epidemics from large-scale information, Theoretical population biology, 69, 3, (2006) · Zbl 1086.92048
[15] Focks, D.A.; Haile, D.C.; Daniels, E.; Keesling, D., A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation and samples of simulation results, American journal of tropical medicinal hygiene, 53, 489, (1995)
[16] L.B.L. Santos, M.C. Costa, S.T.R. Pinho, R.F.S. Andrade, F.R. Barreto, M.G. Teixeira, M.L. Barreto, Periodic forcing in a three level cellular automata model for a vector transmitted disease, arXiv:0810.0384v1, 2008.
[17] Otero, M.; Solari, H.G.; Schweigmann, N., A stochastic population dynamic model for aedes aegypti: formulation and application to a city with temperate climate, Bulletin of the mathematical biology, 68, 1945, (2006) · Zbl 1296.92215
[18] Otero, M.; Schweigmann, N.; Solari, H.G., A stochastic spatial dynamical model for aedes aegypti, Bulletin of mathematical biology, 70, 1297, (2008) · Zbl 1142.92028
[19] Southwood, T.R.E.; Murdie, G.; Yasuno, M.; Tonn, R.J.; Reader, P.M., Studies on the life budget of aedes aegypti in wat samphaya Bangkok Thailand, Bulletin of the world health organisation, 46, 211, (1972)
[20] Christophers, R., aedes aegypti (L.), the yellow fever mosquito, (1960), Cambridge University Press Cambridge
[21] Carbajo, A.E.; Curto, S.I.; Schweigmann, N., Spatial distribution pattern of oviposition in the mosquito aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector, Medical and veterinary entomology, 20, 209, (2006)
[22] Wolfinsohn, M.; Galun, R., A method for determining the flight range of aedes aegypti (linn.), Bullentin of the research council of Israel, 2, 433, (1953)
[23] Reiter, P.; Amador, M.A.; Anderson, R.A.; Clark, G.G., Short report: dispersal of aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs, American journal of tropical medicinal hygiene, 52, 177, (1995)
[24] Edman, J.D.; Scott, T.W.; Costero, A.; Morrison, A.C.; Harrington, L.C.; Clark, G.G., aedes aegypti (diptera culicidae) movement influenced by availability of oviposition sites, Journal of medicinal entomology, 35, 4, 578, (1998)
[25] Ethier, S.N.; Kurtz, T.G., Markov processes, (1986), John Wiley and Sons New York · Zbl 0592.60049
[26] Andersson, H.; Britton, T., Stochastic epidemic models and their statistical analysis, Lecture notes in statistics, vol. 151, (2000), Springer-Verlag Berlin · Zbl 0951.92021
[27] Solari, H.G.; Natiello, M.A., Stochastic population dynamics: the Poisson approximation, Physical review E, 67, 031918, (2003) · Zbl 1318.60084
[28] Aparicio, J.P.; Solari, H.G., Population dynamics: a Poissonian approximation and its relation to the Langevin process, Physical review letters, 86, 4183, (2001)
[29] Carbajo, A.E.; Gomez, S.M.; Curto, S.I.; Schweigmann, N., Variación espacio temporal del riesgo de transmisión de dengue en la ciudad de Buenos Aires, Medicina, 64, 231, (2004)
[30] Focks, D.A.; Brenner, R.J.; Hayes, J.; Daniels, E., Transmission thresholds for dengue in terms of aedes aegypti pupae per person with discussion of their utility in source reduction efforts, American journal of tropical medicinal hygiene, 62, 1, 11, (2000)
[31] Bartlett, M.S., The relevance of stochastic models for large-scale epidemiological phenomena, Applied statistics, 13, 1, 2, (1964) · Zbl 0134.38102
[32] Lloyd, A.L.; Zhang, J.; Root, A.M., Stochasticity and heterogeneity in host vector models, Interface, 4, 851, (2007)
[33] WHO, Yellow Fever, World Health Organization, Ginebra, Suiza, 2001, fact sheet 100.
[34] Simmons, J.S., Dengue fever, The American journal of tropical medicine XI, 77, (1933)
[35] Massad, E.; Coutnho, F.A.B.; Burattini, M.N.; Lopez, L.F.F., The risk of yellow fever in a dengue-infested area, Transactions of the royal society of tropical medicine and hygiene, 95, 370, (2001)
[36] Dégallier, P.N.; Hervé, J.P.; Rosa, A.F.A.T.D.; Sa, G.C., aedes aegypti (l.): importance de sa bioécologie dans la transmission de la dengue et des autres arbobirus, Bulletin des societes pathologie exotique, 81, 97, (1988)
[37] Gubler, D.J., Dengue and dengue hemorrhagic fever, Clinical microbiology review, 11, 480, (1998)
[38] J. Vainio, F. Cutts, Yellow fever, Tech. Rep., World Health Organization, Geneva, 1998.
[39] van der Most, R.G.; Murali-JKrishna, K.; Ahmed, R.; Strauss, J.H., Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific cd8 t-cell response, Journal of virology, 74, 8094, (2000)
[40] Chowella, G.; Diaz-Dueñas, P.; Miller, J.; Alcazar-Velazco, A.; Hyman, J.; Fenimore, P.; Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic, Mathematical biosciences, 208, 571, (2007) · Zbl 1119.92055
[41] Nishiura, H.; Halstead, S.B., Natural history of dengue virus (denv)-1 and denv-4 infections: reanalysis pf classic studies, Journal of infectious diseases, 195, 1007, (2007)
[42] Actualización casos de dengue en argentina, 10 de mayo de 2009, Tech. rep., Ministerio de Salud Pública de Argentina, Buenos Aires, 2009, Available from <http://www.msal.gov.ar/htm/Site/sala_situacion/index.asp>.
[43] Campaña de erradicacion del Aedes aegypti en la república argentina. informe final, Tech. Rep., Ministerio de Asistencia Social y Salud Publica, Argentina, Buenos Aires, 1964.
[44] Rotela, C.; Fouque, F.; Lamfri, M.; Sabatier, P.; Introini, V.; Zaidenberg, M.; Scavuzzo, C., Space-time analysis of the dengue spreading dynamics in the 2004 tartagal outbreak northern Argentina, Acta tropica, 103, 1, (2007)
[45] Király, A.; Jánosi, I.M., Stochastic modelling of daily temperature fluctuations, Physical review E, 65, 051102, (2002)
[46] Sharpe, P.J.H.; DeMichele, D.W., Reaction kinetics of poikilotherm development, Journal of theoretical biology, 64, 649, (1977)
[47] Schoofield, R.M.; Sharpe, P.J.H.; Magnuson, C.E., Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory, Journal of theoretical biology, 88, 719, (1981)
[48] Focks, D.A.; Haile, D.C.; Daniels, E.; Moun, G.A., Dynamics life table model for aedes aegypti: analysis of the literature and model development, Journal of medical entomology, 30, 1003, (1993)
[49] Trpis, M., Dry season survival of aedes aegypti eggs in various breeding sites in the dar salaam area, tanzania, Bulletin of the world health organisaion, 47, 433, (1972)
[50] Horsfall, W.R., Mosquitoes: their bionomics and relation to disease, (1955), Ronald New York, USA
[51] Bar-Zeev, M., The effect of temperature on the growth rate and survival of the immature stages of aedes aegypti, Bulletin of the entomological research, 49, 157, (1958)
[52] Rueda, L.M.; Patel, K.J.; Axtell, R.C.; Stinner, R.E., Temperature-dependent development and survival rates of culex quinquefasciatus and aedes aegypti (diptera: culicidae), Journal of medicinal entomology, 27, 892, (1990)
[53] Fay, R.W., The biology and bionomics of aedes aegypti in the laboratory, Mosquito news, 24, 300, (1964)
[54] Bar-Zeev, M., The effect of density on the larvae of a mosquito and its influence on fecundity, Bulletin of the research council Israel 6B, 220, (1957)
[55] Nayar, J.K.; Sauerman, D.M., The effects of nutrition on survival and fecundity in florida mosquitoes. part 3. utilization of blood and sugar for fecundity, Journal of medicinal entomology, 12, 220, (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.