zbMATH — the first resource for mathematics

An investigation of the thermal performance of cylindrical heat pipes using nanofluids. (English) Zbl 1180.80043
Summary: In this work, a two-dimensional analysis is used to study the thermal performance of a cylindrical heat pipe utilizing nanofluids. Three of the most common nanoparticles, namely Al\(_{2}\)O\(_{3}\), CuO, and TiO\(_{2}\) are considered as the working fluid. A substantial change in the heat pipe thermal resistance, temperature distribution, and maximum capillary heat transfer of the heat pipe is observed when using a nanofluid. The nanoparticles within the liquid enhance the thermal performance of the heat pipe by reducing the thermal resistance while enhancing the maximum heat load it can carry. The existence of an optimum mass concentration for nanoparticles in maximizing the heat transfer limit is established. The effect of particle size on the thermal performance of the heat pipe is also investigated. It is found that smaller particles have a more pronounced effect on the temperature gradient along the heat pipe.

80A20 Heat and mass transfer, heat flow (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI
[1] Choi, S. U. S.: Enhancing thermal conductivity of fluids with nanoparticles, Asme fed 231, 99-105 (1995)
[2] Kakac, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids, Int. J. Heat mass transfer 52, 3187-3196 (2009) · Zbl 1167.80338
[3] Kang, S. W.; Wei, W. C.; Tsai, S. H.; Yang, S. Y.: Experimental investigation of silver nano-fluid on heat pipe thermal performance, Appl. therm. Eng. 26, 2377-2382 (2006)
[4] Naphon, P.; Thongkum, D.; Assadamongkol, P.: Heat pipe efficiency enhancement with refrigerant – nanoparticles mixtures, Energy convers. Manage. 50, 772-776 (2009)
[5] Yang, X. F.; Liu, Z. H.; Zhao, J.: Heat transfer performance of a horizontal micro-grooved heat pipe using cuo nanofluid, J. micromech. Microeng. 18, 035038 (2008)
[6] Ma, H. B.; Wilson, C.; Yu, Q.; Park, K.; Choi, U. S.; Tirumala, M.: An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe, J. heat transfer 128, 1213-1216 (2006)
[7] Naphon, P.; Assadamongkol, P.; Borirak, T.: Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency, Int. commun. Heat mass transfer 35, 1316-1319 (2008)
[8] Kang, S. W.; Wei, W. C.; Tsai, S. H.; Huang, C. C.: Experimental investigation of nanofluids on sintered heat pipe thermal performance, Appl. therm. Eng. 29, 973-979 (2009)
[9] Liu, Z.; Xiong, J.; Bao, R.: Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, Int. J. Multiphase flow 33, 1284-1295 (2007)
[10] R.R. Riehl, Analysis of loop heat pipe behavior using nanofluid, in: Heat Powered Cycles International Conference (HPC), New Castle, UK, Paper 06102, 2006.
[11] Y. Chen, W. Wei, S. Kang, C. Yu, Effect of nanofluid on flat heat pipe thermal performance, in: 24th IEEE SEMI-THERM Symposium, pp. 16 – 19.
[12] Ma, H. B.; Wilson, C.; Borgmeyer, B.; Park, K.; Yu, Q.; Choi, S. U. S.; Tirumala, M.: Effect of nanofluid on the heat transport capability in an oscillating heat pipe, Appl. phys. Lett. 88, 143116 (2006)
[13] Lin, Y.; Kang, S.; Chen, H.: Effect of silver nano-fluid on pulsating heat pipe thermal performance, Appl. therm. Eng. 28, 1312-1317 (2008)
[14] Tsaia, C. Y.; Chiena, H. T.; Dingb, P. P.; Chanc, B.; Luhd, T. Y.; Chena, P. H.: Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Mater. lett. 58, 1461-1465 (2004)
[15] Zhu, N.; Vafai, K.: Analysis of cylindrical heat pipes incorporating the effects of liquid – vapor coupling and non-darcian transport – a closed form solution, Int. J. Heat mass transfer 42, 3405-3418 (1999) · Zbl 0969.76091
[16] Vafai, K.; Tien, C. L.: Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat mass transfer 24, 195-203 (1981) · Zbl 0464.76073
[17] Vafai, K.: Convective flow and heat transfer in variable porosity media, J. fluid mech. 147, 233-259 (1984) · Zbl 0578.76099
[18] Chi, S. W.: Heat pipe theory and practice, (1976)
[19] Das, S. K.; Choi, S. U. S.; Yu, W.; Pradeep, T.: Nanofluids science and technology, (2008)
[20] Pak, B. C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. heat transfer 11, 151-170 (1998)
[21] Brinkman, H. C.: The viscosity of concentrated suspensions and solution, J. chem. Phys. 20, 571-581 (1952)
[22] L. Huang, M.S. El-Genk, J.-M. Tournier, Transient performance of an inclined water heat pipe with a screen wick, in: ASME National Heat Transfer Conference, Atlanta, Heat Pipes and Capillary Pumped Loops, vol. 236, 1993, pp. 87 – 92.
[23] Yu, W.; Choi, S. U. S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. nanoparticle res. 5, 167-171 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.