zbMATH — the first resource for mathematics

Remarks on “Quasi-contraction on a cone metric space”. (English) Zbl 1180.54056
Summary: Recently, D. Ilić and V. Rakočević [Appl. Math. Lett. 22, No. 5, 728–731 (2009; Zbl 1179.54060)] proved a fixed point theorem for quasi-contractive mappings in cone metric spaces when the underlying cone is normal. The aim of this paper is to prove this and some related results without using the normality condition.

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
Full Text: DOI
[1] Ćirić, Lj.B., A generalization of banach’s contraction principle, Proc. amer. math. soc., 45, 267-273, (1974) · Zbl 0291.54056
[2] Huang, L.G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. math. anal. appl., 332, 2, 1468-1476, (2007) · Zbl 1118.54022
[3] Abbas, M.; Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. math. anal. appl., 341, 416-420, (2008) · Zbl 1147.54022
[4] Ilić, D.; Rakočević, V., Common fixed points for maps on cone metric space, J. math. anal. appl., 341, 876-882, (2008) · Zbl 1156.54023
[5] Rezapour, Sh.; Hamlbarani, R., Some notes on the paper “cone metric spaces and fixed point theorems of contractive mappings”, J. math. anal. appl., 345, 719-724, (2008) · Zbl 1145.54045
[6] Ilić, D.; Rakočević, V., Quasi-contraction on cone metric space, Appl. math. lett., (2008)
[7] Deimling, K., Nonlinear functional analysis, (1985), Springer-Verlag · Zbl 0559.47040
[8] Jeong, G.S.; Rhoades, B.E., Maps for which \(F(T) = F(T^n)\), Fixed point theory appl., 6, 87-131, (2005) · Zbl 1147.47041
[9] Abbas, M.; Rhoades, B.E., Fixed and periodic point results in cone metric spaces, Appl. math. lett., (2008) · Zbl 1158.47039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.