×

Evolution equations for the probabilistic generalization of the Voigt profile function. (English) Zbl 1179.82008

Summary: The spectrum profile that emerges in molecular spectroscopy and atmospheric radiative transfer as the combined effect of Doppler and pressure broadenings is known as the Voigt profile function. Because of its convolution integral representation, the Voigt profile can be interpreted as the probability density function of the sum of two independent random variables with Gaussian density (due to the Doppler effect) and Lorentzian density (due to the pressure effect). Since these densities belong to the class of symmetric Lévy stable distributions, a probabilistic generalization is proposed as the convolution of two arbitrary symmetric Lévy densities. We study the case when the widths of the distributions considered depend on a scale factor \(\tau \) that is representative of spatial inhomogeneity or temporal non-stationarity. The evolution equations for this probabilistic generalization of the Voigt function are here introduced and interpreted as generalized diffusion equations containing two Riesz space-fractional derivatives, thus classified as space-fractional diffusion equations of double order.

MSC:

82B03 Foundations of equilibrium statistical mechanics
33E20 Other functions defined by series and integrals
45K05 Integro-partial differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andersen, T., The differential equations of the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 19, 169-171 (1978)
[2] Armstrong, B. H., Spectrum line profiles: the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 7, 61-88 (1967)
[3] Di Rocco, H. O.; Iriarte, D. I.; Pomarico, J., General expression for the Voigt function that is of so special interest for applied spectroscopy, Appl. Spectrosc., 55, 822-826 (2001)
[4] Dulov, E. N.; Khripunov, D. M., Voigt lineshape function as a solution of the parabolic partial differential equation, J. Quant. Spectrosc. Radiat. Transfer, 107, 421-428 (2007)
[5] Letchworth, K. L.; Benner, D. C., Rapid and accurate calculation of the Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 107, 173-192 (2007)
[6] Mendenhall, M. H., Fast computation of Voigt functions via Fourier transforms, J. Quant. Spectrosc. Radiat. Transfer, 105, 519-524 (2007)
[7] Mainardi, F.; Pagnini, G., Mellin-Barnes integrals for stable distributions and their convolutions, Fract. Calc. Appl. Anal., 11, 4, 443-456 (2008) · Zbl 1175.26017
[8] Sampoorna, M.; Nagendra, K. N.; Frisch, H., Generalized Voigt functions and their derivatives, J. Quant. Spectrosc. Radiat. Transfer, 104, 71-85 (2007)
[9] Yang, S., A unification of the Voigt functions, Int. J. Math. Educ. Sci. Technol., 25, 845-851 (1994) · Zbl 0894.33008
[10] Zaghloul, M. R., On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand, Mon. Not. R. Astron. Soc., 375, 1043-1048 (2007)
[11] Srivastava, H. M.; Miller, E. A., A unified presentation of the Voigt functions, Astrophys. Space Sci., 135, 111-118 (1987) · Zbl 0601.33001
[12] Srivastava, H. M.; Chen, M. P., Some unified presentations of the Voigt functions, Astrophys. Space Sci., 192, 63-74 (1992) · Zbl 0727.33012
[13] Khan, S.; Agrawal, B.; Pathan, M. A., Some connections between generalized Voigt functions with the different parameters, Appl. Math. Comput., 181, 57-64 (2006) · Zbl 1154.33301
[14] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66 (2002), 046129/1-7
[15] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4, 2, 153-192 (2001), http://www.fracalmo.org. E-print: arXiv:cond-mat/0702419 · Zbl 1054.35156
[16] Sokolov, I. M.; Chechkin, A. V.; Klafter, J., Distributed-order fractional kinetics, Acta Phys. Pol. B, 35, 1323-1341 (2004)
[17] Paris, R. B.; Kaminski, D., Asymptotics and Mellin-Barnes Integrals (2001), Cambridge University Press · Zbl 0983.41019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.