×

zbMATH — the first resource for mathematics

Supersymmetric boundary conditions in \(\mathcal{N}=4\) super Yang-Mills theory. (English) Zbl 1178.81180
Authors’ abstract: We study boundary conditions in \(N=4\) super Yang-Mills theory that preserve one-half the supersymmetry. The obvious Dirichlet boundary conditions can be modified to allow some of the scalar fields to have a “pole” at the boundary. The obvious Neumann boundary conditions can be modified by coupling to additional fields supported at the boundary. The obvious boundary conditions associated with orientifolds can also be generalized. In preparation for a separate study of how electric-magnetic duality acts on these boundary conditions, we explore moduli spaces of solutions of Nahm’s equations that appear in the presence of a boundary. Though our main interest is in boundary conditions that are Lorentz-invariant (to the extent possible in the presence of a boundary), we also explore non-Loretz-invariant but half-BPS deformations of Neumann boundary conditions. We make preliminary comments on the action of electric-magnetic duality, deferring a more serious study to a later paper.

MSC:
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Nahm, W.: A simple formalism for the BPS monopole. Phys. Lett. B 90, 413 (1980)
[2] Weinberg, E.J., Yi, P.: Magnetic monopole dynamics, supersymmetry, and duality. Phys. Rep. 438, 65–236 (2007). hep-th/0609055
[3] Diaconescu, D.-E.: D-branes, monopoles and Nahm equations. Nucl. Phys. B 503, 220–238 (1997). hep-th/9608163 · Zbl 0938.81034
[4] Tsimpis, D.: Nahm equations and boundary conditions. Phys. Lett. B 433, 287–290 (1998). hep-th/9804081
[5] Kapustin, A., Sethi, S.: The Higgs branch of impurity theories. Adv. Theor. Math. Phys. 2, 571–591 (1998). hep-th/9804027 · Zbl 0967.81050
[6] DeWolfe, O., Freedman, D.Z., Ooguri, H.: Holography and defect conformal field theories. Phys. Rev. D 66, 025009 (2002). hep-th/0111135
[7] Erdmenger, J., Guralnik, Z., Kirsch, I.: Four-dimensional superconformal theories with interacting boundaries or defects. Phys. Rev. D 66, 025020 (2002). hep-th/0203020
[8] Constable, N.R., Erdmenger, J., Guralnik, Z., Kirsch, I.: Intersecting D3-branes and holography. Phys. Rev. D 68, 106007 (2003). hep-th/0211222 · Zbl 1035.81046
[9] Brink, L., Schwarz, J.H., Scherk, J.: Supersymmetric Yang-Mills theories. Nucl. Phys. B 121, 77 (1977)
[10] Gaiotto, D., Witten, E.: Janus configurations, Chern-Simons couplings, and the theta-angle in N=4 super Yang-Mills theory, 0804.2907 · Zbl 1290.81065
[11] D’Hoker, E., Estes, J., Gutperle, M.: Interface Yang-Mills, supersymmetry, and Janus. Nucl. Phys. B 753, 16 (2006). hep-th/0603013 · Zbl 1215.81106
[12] Constable, N.R., Myers, R.C., Tafjord, O.: The noncommutative bion core. Phys. Rev. D 61, 106009 (2000). hep-th/9911136
[13] Kronheimer, P.B.: Instantons and the geometry of the nilpotent variety. J. Differ. Geom. 32, 473–490 (1990) · Zbl 0725.58007
[14] Kronheimer, P.B.: A hyper-Kahlerian structure on coadjoint orbits of a complex Lie group. J. Lond. Math. Soc. 42, 193–208 (1990) · Zbl 0721.22006
[15] Bielawski, R.: Lie groups, Nahm’s equations and hyperkaehler manifolds. Universitatsverlag Gottingen, Gottingen (2007) · Zbl 1132.53308
[16] Atiyah, M.F., Bielawski, R.: Nahm’s equations, configuration spaces and flag manifolds. Bull. Braz. Math. Soc. (N.S.) 33, 157–176 (2002) · Zbl 1022.22007
[17] Chen, X., Weinberg, E.J.: ADHMN boundary conditions from removing monopoles. Phys. Rev. D 67, 065020 (2003). hep-th/0212328 · Zbl 1222.81212
[18] Callan, C.G., Maldacena, J.M.: Brane dynamics from the Born-Infeld action. Nucl. Phys. B 513, 198–212 (1998). hep-th/9708147 · Zbl 0958.81105
[19] Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007). hep-th/0604151 · Zbl 1128.22013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.