zbMATH — the first resource for mathematics

Statistical structure of momentum sources and sinks in the outer region of a turbulent boundary layer. (English) Zbl 1178.76017
Summary: The spatial structure of momentum sources and sinks (\(T > 0\) and \(T < 0\); where \(T\) is the streamwise component of the Lamb vector) is examined in a turbulent boundary layer by using dual-plane particle image velocimetry data obtained in streamwise-spanwise planes at two wall-normal locations (\(x_{2}/\delta = 0.1\) and \(0.5\), where \(x_{2}\) is the wall-normal location and \(\delta \) is the boundary layer thickness). Two-point correlations of \(T\) indicate that the size of source motions remains relatively constant while the size of sink motions increases with increasing wall-normal distance. The relative strength of sink motions also increases away from the wall. The velocity field in the vicinity of source/sink motions was explored by computing cross-correlations of \(T\) with the velocity components. Source-like motions are correlated with elongated low-momentum zones that possess regions of upwash embedded within them and appear to be the strongest in areas where these low-momentum zones meander in the spanwise direction. Momentum sinks appear to be located within low-speed regions that are within larger high-momentum zones. The velocity fluctuations undergo rapid transitions between quadrants in the vicinity of sinks (i.e. both streamwise and wall-normal velocity fluctuations change sign). The length scales, over which the fluctuations change sign, are much larger at \(x_{2}/\delta = 0.5\) than at \(x_{2}/\delta = 0.1\).

76-05 Experimental work for problems pertaining to fluid mechanics
76F40 Turbulent boundary layers
76F55 Statistical turbulence modeling
Full Text: DOI
[1] DOI: 10.1063/1.858763 · doi:10.1063/1.858763
[2] DOI: 10.1017/S0022112072000515 · doi:10.1017/S0022112072000515
[3] DOI: 10.1023/A:1013562531776 · Zbl 0993.76038 · doi:10.1023/A:1013562531776
[4] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[5] DOI: 10.1063/1.868594 · doi:10.1063/1.868594
[6] Hinze, Turbulence. (1975)
[7] DOI: 10.1063/1.868082 · doi:10.1063/1.868082
[8] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[9] DOI: 10.1063/1.1801891 · Zbl 1187.76275 · doi:10.1063/1.1801891
[10] DOI: 10.1007/s00348-005-1019-z · doi:10.1007/s00348-005-1019-z
[11] DOI: 10.1063/1.857354 · doi:10.1063/1.857354
[12] DOI: 10.1063/1.2196089 · doi:10.1063/1.2196089
[13] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[14] DOI: 10.1017/S0022112004002277 · Zbl 1060.76503 · doi:10.1017/S0022112004002277
[15] DOI: 10.1017/S0022112076003145 · doi:10.1017/S0022112076003145
[16] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[17] DOI: 10.1017/S002211207200165X · doi:10.1017/S002211207200165X
[18] Westerweel, Digital Particle Image Velocimetry - Theory and Applications. (1994)
[19] DOI: 10.1017/S0022112004001958 · Zbl 1065.76106 · doi:10.1017/S0022112004001958
[20] DOI: 10.1017/S0022112006002771 · Zbl 1106.76317 · doi:10.1017/S0022112006002771
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.