×

zbMATH — the first resource for mathematics

A priori error estimates for elliptic optimal control problems with a bilinear state equation. (English) Zbl 1178.65071
Summary: A priori error analysis for the finite element discretization of an optimal control problem governed by an elliptic state equation is considered. The control variable enters the state equation as a coefficient and is subject to pointwise inequality constraints. The authors derive a priori error estimates for the discretization error in the control variable. Theoretical results by numerical examples are confirmed.

MSC:
65K10 Numerical optimization and variational techniques
49J20 Existence theories for optimal control problems involving partial differential equations
49M25 Discrete approximations in optimal control
Software:
GASCOIGNE; RoDoBo
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banks, Harvey T.; Kunisch, Karl, Estimation techniques for distributed parameter systems, (1989), Birkhäuser Boston · Zbl 0695.93020
[2] Falk, Richard S., Error estimates for the numerical identification of a variable coefficient, Math. comp., 40, 537-546, (1983) · Zbl 0551.65083
[3] Kärkkäinen, Tommi, Error estimates for distributed parameter identification in linear elliptic equations, J. math. syst. estim. control, 6, 1-20, (1996) · Zbl 0856.65136
[4] Kärkkäinen, Tommi, A linearization technique and error estimates for distributed parameter identification in quasilinear problems, Numer. funct. anal. optim., 17, 345-364, (1996) · Zbl 0858.65127
[5] Neittaanmäki, Pekka; Tai, Xue-Cheng, A linear approach for the nonlinear distributed parameter identification problem, Internat. ser. numer. math., 100, (1991) · Zbl 0733.65098
[6] Neittaanmäki, Pekka; Tai, Xue-Cheng, On the numerical solution of the distributed parameter identification problem, (), 317-330 · Zbl 0742.35073
[7] Neittaanmäki, Pekka; Tai, Xue-Cheng, Error estimates for numerical identification of distributed parameters, J. comput. appl. math., 10, 66-78, (1992) · Zbl 0793.65066
[8] Neittaanmäki, Pekka; Tai, Xue-Cheng, Pointwise error estimates for distributed parameter identification, (), 455-468 · Zbl 0972.34010
[9] Arada, Nadir; Casas, Eduardo; Tröltzsch, Fredi, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. optim. appl., 23, 201-229, (2002) · Zbl 1033.65044
[10] Becker, Roland; Vexler, Boris, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. math., 106, 349-367, (2007) · Zbl 1133.65037
[11] Casas, Eduardo, Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems, Adv. comput. math., 26, 137-153, (2007) · Zbl 1118.65069
[12] Casas, Eduardo; Tröltzsch, Fredi, Error estimates for the finite-element approximation of a semilinear elliptic control problem, Control cybernet., 31, 695-712, (2002) · Zbl 1126.49315
[13] Casas, Eduardo; Tröltzsch, Fredi, Error estimates for linear – quadratic elliptic control problems, () · Zbl 1027.65088
[14] Hinze, Michael, A variational discretization concept in control constrained optimization: the linear – quadratic case, Comput. optim. appl., 30, 45-61, (2005) · Zbl 1074.65069
[15] Meyer, Christian; Rösch, Arnd, Superconvergence properties of optimal control problems, SIAM J. control optim., 43, 970-985, (2004) · Zbl 1071.49023
[16] Malanowski, Kazimierz, Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems, Appl. math. optim., 8, 69-95, (1981) · Zbl 0479.49017
[17] Meidner, Dominik; Vexler, Boris, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. part I: problems without control constraints, SIAM J. control optim., 47, 1150-1177, (2008) · Zbl 1161.49026
[18] Meidner, Dominik; Vexler, Boris, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. part II: problems with control constraints, SIAM J. control optim., 47, 1301-1329, (2008) · Zbl 1161.49035
[19] Lions, Jacques Louis, ()
[20] Tröltzsch, Fredi, Optimale steuerung partieller differentialgleichungen, (2005), Vieweg Wiesbaden · Zbl 1142.49001
[21] Grisvard, Pierre, Elliptic problems in nonsmooth domains, (1985), Pitman Boston · Zbl 1231.35002
[22] Kozlov, Vladimir A.; Maz’ja, Vladimir G.; Roßmann, Jürgen, Spectral problems associated with corner singularities of solutions of elliptic equations, (2001), American Mathematical Society Providence, RI
[23] Rösch, Arnd; Wachsmuth, Daniel, Numerical verification of optimality conditions, SIAM J. control optim., 47, 2557-2581, (2008) · Zbl 1171.49018
[24] Ern, Alexander; Guermond, Jean-Luc, Theory and practice of finite elements, (2004), Springer New York · Zbl 1059.65103
[25] Braess, Dietrich, Finite elemente theorie, (2003), Springer Berlin · Zbl 1070.65570
[26] Brenner, Susanne C.; Ridgway scott, L., The mathematical theory of finite element methods, (2002), Springer New York · Zbl 1012.65115
[27] RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs. http://www.rodobo.uni-hd.de
[28] GASCOIGNE, The Finite Element Toolkit. http://www.gascoigne.uni-hd.de
[29] Bergounioux, Maïtine; Ito, Kazufumi; Kunisch, Karl, Primal – dual strategy for constrained optimal control problems, SIAM J. control optim., 37, 1176-1194, (1999) · Zbl 0937.49017
[30] Ito, Kazufumi; Kunisch, Karl, The primal – dual active set method for nonlinear optimal control problems with bilateral constraints, SIAM J. control optim., 43, 357-376, (2004) · Zbl 1077.90051
[31] Kunisch, Karl; Rösch, Arnd, Primal – dual active set strategy for a general class of constrained optimal control problems, SIAM J. optim., 13, 321-334, (2002) · Zbl 1028.49027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.