zbMATH — the first resource for mathematics

\(T\)-conditional possibilities: coherence and inference. (English) Zbl 1178.60006
Summary: We refer to an axiomatic definition of \(T\)-conditional possibility, where \(T\) is any \(t\)-norm. We characterize a full \(T\)-conditional possibility in terms of a suitable set of unconditional possibilities. Starting from this characterization we are able to manage coherent conditional possibility assessments and their enlargements. To compare \(T\)-conditional possibility related to different \(t\)-norm \(T\), we study binary relations locally representable by a \(T\)-conditional possibility.

60A86 Fuzzy probability
60A05 Axioms; other general questions in probability
Full Text: DOI
[1] Amor, N.B.; Mellouli, K.; Benferhat, S.; Dubois, D.; Prade, H., A theoretical framework for possibilistic independence in a weakly ordered setting, Internat. J. uncertainty fuzziness knowledge-based systems, 10, 2, 117-155, (2002) · Zbl 1084.68126
[2] Benferhat, S.; Dubois, D.; Prade, H., Expressing independence in a possibilistic framework and its application to default reasoning, (), 150-154
[3] Bouchon-Meunier, B.; Coletti, G.; Marsala, C., Independence and possibilistic conditioning, Ann. math. artificial intelligence, 35, 107-124, (2002) · Zbl 1004.60001
[4] Coletti, G.; Scozzafava, R., The role of coherence in eliciting and handling ‘imprecise’ probabilities and its application to medical diagnosis, Inform. sci., 130, 41-65, (2000) · Zbl 0984.68155
[5] G. Coletti, R. Scozzafava, Probabilistic logic in a coherent setting, in: Trends in Logic, vol. 15, Kluwer, Dordrecht, Boston, London, 2002. · Zbl 1005.60007
[6] G. Coletti, B. Vantaggi, Comparative conditional possibilities, in: L. Godo (Ed.), Lecture Notes in Computer Science, vol. LNAI 3571, 2005, pp. 872-883. · Zbl 1113.68511
[7] Coletti, G.; Vantaggi, B., Possibility theory: conditional independence, Fuzzy sets and systems, 157, 1491-1513, (2006) · Zbl 1092.68094
[8] Coletti, G.; Vantaggi, B., Comparative models ruled by possibility and necessity: A conditional world, Internat. J. approx. reason., 45, 341-363, (2007) · Zbl 1122.68132
[9] Coletti, G.; Vantaggi, B., A view on conditional measures through local representability of binary relations, Int. J. approx. reason., 47, 268-283, (2008) · Zbl 1184.68500
[10] De Baets, B.; Tsiporkova, E.; Mesiar, R., Conditioning in possibility theory with strict order norms, Fuzzy sets and systems, 106, 221-229, (1999) · Zbl 0985.28015
[11] de Cooman, G., Possibility theory II: conditional possibility, Internat. J. gen. systems, 25, 325-351, (1997) · Zbl 0955.28013
[12] de Finetti, B., Sul significato soggettivo Della probabilità, Fund. math., 17, 293-329, (1931) · JFM 57.0608.07
[13] de Finetti, B., Sull’impostazione assiomatica del calcolo delle probabilitá, Ann. univ. di trieste, 19, 29-81, (1949), (English Trans.: Probability, Induction, Statistics, Wiley, London, 1972, Ch. 5) · Zbl 0036.20703
[14] Dubois, D., Belief structure, possibility theory and decomposable confidence measures on finite sets, Comput. artificial intelligence, 5, 403-416, (1986) · Zbl 0657.60006
[15] D. Dubois, L. Fariñas del Cerro, A. Herzig, H. Prade, An ordinal view of independence with application to plausible reasoning, in: R. Lopez de Mantaras, D. Poole (Eds.), Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence, Seattle, WA, July 29-31, 1994, pp. 195-203.
[16] Dubois, D.; Prade, H., Possibility theory, (1988), Plenum Press New York · Zbl 0645.68108
[17] Dubois, D.; Prade, H., The logical view of conditioning and its application to possibility and evidence theories, Internat. J. approx. reason., 4, 23-46, (1990) · Zbl 0696.03006
[18] Dubois, D.; Prade, H., Bayesian conditioning in possibility theory, Fuzzy sets and systems, 92, 223-240, (1997) · Zbl 1053.62503
[19] Ferracuti, L.; Vantaggi, B., Independence and conditional possibilities for strictly monotone triangular norms, Internat. J. intelligent systems, 21, 299-323, (2006) · Zbl 1088.60003
[20] Goodman, I.R.; Nguyen, H.T., Conditional objects and the modeling of uncertainties, (), 119-138
[21] Hisdal, E., Conditional possibilities independence and noninteraction, Fuzzy sets and systems, 1, 283-297, (1978) · Zbl 0393.94050
[22] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Dordrecht · Zbl 0972.03002
[23] Koopman, B.O., The axioms and algebra of intuitive probability, Ann. math., 41, 269-292, (1940) · Zbl 0024.05001
[24] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3-28, (1978) · Zbl 0377.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.