×

zbMATH — the first resource for mathematics

DNS and modeling of the turbulent boundary layer over an evaporating liquid film. (English) Zbl 1177.80074
Summary: Contrary to the case of flame interaction with a dry wall, little is known today about liquid film evaporation effects on the physics and structure of the boundary layer and on the flame evolution when approaching a liquid film. In this paper, Direct Numerical Simulation (DNS) is used to study the boundary layer above a liquid evaporating film in the fully developed turbulent channel flow configuration where only the liquid film surface is viewed by the simulation through a boundary condition. First, the classical minimal isothermal channel of J. Kim, P. Moin and R. Moser [J. Fluid Mech. 177, 133–166 (1987; Zbl 0616.76071)] is computed to check the accuracy of the DNS solver. Next, the calculations are repeated for an anisothermal case where hot gas is flowing between cold walls. The numerical results corroborate those of F. Nicoud, G. Winckelmans, D. Carati, J. Baggett and W. Cabot [Boundary conditions for LES away from the wall, in: Summer Program, Center for Turbulence Research, 413–422 (1998)] and P. Huang and G. Coleman [Van Driest transformation and compressible wall-bounded flows, AIAA J. 32, No. 10, 2110–2113 (1994)], introducing modified dimensionless variables. Finally, an evaporating liquid film is added at the walls. The complexity of the interaction between the evaporation process and the boundary layer structure, as well as its strong dependence on the thermophysical properties (that change with the mixture composition) are highlighted. As in the anisothermal case, the classical wall units are no longer adapted to build wall functions and new dimensionless variables are proposed. In addition a wall function must be developed for the evaporating species mass fraction, using a new dimensionless wall variable. It is shown that using these new variables allows to derive new wall functions for momentum, temperature and mass that lead to a correct description of the boundary layer when compared to DNS. These new wall functions may be directly implemented in CFD codes to take into account the impact of an evaporating liquid film.

MSC:
80A22 Stefan problems, phase changes, etc.
76F65 Direct numerical and large eddy simulation of turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
Software:
AVBP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schönfeld, T.; Rudgyard, M.: Steady and unsteady flows simulations using the hybrid flow solver AVBP, Aiaa j. 37, No. 11, 1378-1385 (1999)
[2] Kim, J.; Moin, P.; Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number, J. fluid mech. 177, 133-166 (1987) · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[3] F. Nicoud, G. Winckelmans, D. Carati, J. Baggett, W. Cabot, Boundary conditions for LES away from the wall, in: Summer Program, Center for Turbulence Research, 1998, pp. 413 – 422.
[4] Huang, P.; Coleman, G.: Van driest transformation and compressible wall-bounded flows, Aiaa j. 32, No. 10, 2110-2113 (1994)
[5] Kays, W. M.; Crawford, M.: Convective heat and mass transfer, (2004)
[6] Nicoud, F.; Angilella, J.: Effects of uniform injection at wall on the stability of Couette-like flows, Phys. rev. E 56, No. 3, 3000-3009 (1997)
[7] S. Mendez, F. Nicoud, LES of a turbulent flow around a perforated plate, in: CY-LES, Limassol, Cyprus, 2005. · Zbl 1303.76051
[8] T. Poinsot, D. Veynante, in: R.T. Edwards (Ed.), Theoretical and Numerical Combustion, second ed., 2005.
[9] L. Artal, F. Nicoud, Direct numerical simulation of reacting turbulent multi-species channel flow, in: Proceedings of the 6th International ERCOFTAC Workshop – Direct and Large-Eddy Simulation, Université de Poitiers, France, 2005, pp. 85 – 92.
[10] Alshaalan, T.; Rutland, C.: Turbulence, scalar transport and reaction rates in flame wall interaction, Proc. combust. Inst. 27, 793-799 (1998)
[11] Bruneaux, G.; Akselvoll, K.; Poinsot, T.; Ferziger, J.: Flame-wall interaction in a turbulent channel flow, Combust. flame 107, No. 1/2, 27-44 (1996)
[12] L. Artal, S. Mendez, F. Nicoud, Using direct numerical simulations to develop wall functions, in: ENUMATH 05 – Minisymposium on Multisacle Methods in CFD, Santiago de Compostella, Spain, 2005.
[13] Schlichting, H.: Boundary layer theory, (1955) · Zbl 0065.18901
[14] Piomelli, U.; Moin, P.; Ferziger, P.: Large eddy simulation of the flow in a transpired channel, J. thermophys. 5, No. 1, 124-128 (1991)
[15] Sumitani, Y.; Kasagi, N.: Direct numerical simulation of turbulent transport with uniform wall injection and suction, Aiaa j. 33, No. 7, 1220-1228 (1995)
[16] Jimenez, J.; Moin, P.: The minimal flow unit in near-wall turbulence, J. fluid mech. 225, 213-240 (1991) · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[17] Roux, A.; Gicquel, L.; Sommerer, Y.; Poinsot, T.: Large eddy simulation of mean and oscillating flow in side-dump ramjet combustor, Combust. flame 152, No. 1 – 2, 154-176 (2008)
[18] Schmitt, P.; Poinsot, T.; Schuermans, B.; Geigle, K.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner, J. fluid mech. 570, 17-46 (2007) · Zbl 1106.76383 · doi:10.1017/S0022112006003156
[19] Martin, C.; Benoit, L.; Sommerer, Y.; Nicoud, F.; Poinsot, T.: LES and acoustic analysis of combustion instability in a staged turbulent swirled combustor, Aiaa j. 44, No. 4, 741-750 (2006)
[20] Selle, L.; Benoit, L.; Poinsot, T.; Nicoud, F.; Krebs, W.: Joint use of compressible large-eddy simulation and helmoltz solvers for the analysis of rotating modes in an industrial swirled burner, Combust. flame 145, No. 1 – 2, 194-205 (2006)
[21] Colin, O.; Rudgyard, M.: Development of high-order Taylor – Galerkin schemes for unsteady calculations, J. comput. Phys. 162, No. 2, 338-371 (2000) · Zbl 0982.76058 · doi:10.1006/jcph.2000.6538
[22] A. Ern, V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics, Springer-Verlag, Heidelberg, 1994. · Zbl 0820.76002
[23] C. Angelberger, T. Poinsot, B. Delhaye, Improving near-wall combustion and wall heat transfer modelling in SI engine computations, in: Int. Fall Fuels & Lub. Meeting & Exposition, SAE Paper 972881, Tulsa, 1997.
[24] Z. Han, R. Reitz, F. Corcione, G. Valentino, Interpretation of k-epsilon computed turbulence length scale predictions for engine flows, in: 26th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1996, pp. 2717 – 2723.
[25] Truffin, K.; Benkenida, A.: A temperature fluctuation equation model dedicated to the computation of turbulent thermal layers in high Reynolds internal flows, Int. J. Heat mass transfer 51, No. 21 – 22, 5160-5174 (2008) · Zbl 1154.80349 · doi:10.1016/j.ijheatmasstransfer.2008.02.042
[26] C. Angelberger, Contributions à la modélisation de l’interaction flamme-paroi et des flux pariétaux dans les moteurs à allumage commandé, Ph.D. thesis, PSA peugeot-Citroën et CERFACS (1997).
[27] G. Desoutter, Etude numérique de la propagation d’une flamme sous l’influence d’un film liquide de carburant sur une paroi, Ph.D. thesis, Institut National Polytechnique de Toulouse (2007).
[28] Launder, B.; Spalding, D.: The numerical computation of turbulent flows, Comput. meth. Appl. mech. Eng. 3, 269-289 (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.