Critical times in multilayer diffusion. I: Exact solutions. (English) Zbl 1177.80022

Summary: While diffusion has been well studied, diffusion across multiple layers, each with different properties, has had less attention. This type of diffusion may arise in heat transport across composite materials or layered biological material. Usually of most interest is a critical time, such as the time for a material to heat up. Here an exact solution is found which is used to numerically demonstrate the critical time behaviour for transport across multiple layers with imperfect contact. This solution illustrates the limitations of traditional averaging methods, which are only good for a large number of layers.


80A20 Heat and mass transfer, heat flow (MSC2010)


FlexPDE; Matlab
Full Text: DOI


[1] Barry, S. I.; Sweatman, W. L.: Modelling heat transfer in steel coils, Anziam j. (E) 50, C668 (2009) · Zbl 1359.80005
[2] M. McGuinness, W.L. Sweatman, D.Y. Baowan, S.I. Barry, Annealing steel coils, in: T. Marchant, M. Edwards, G.N. Mercer (Eds.), MISG 2008 Proceedings, 2009. · Zbl 1246.80003
[3] Yuen, W. Y. D.: Transient temperature distribution in a multilayer medium subject to radiative surface cooling, Appl. math. Model. 18, 93-100 (1994) · Zbl 0796.73076
[4] Aguirre, N. M.; De La Cruz, G. G.; Gurevich, Y. G.; Logvinov, G. N.; Kasyanchuk, M. N.: Heat diffusion in two-layer structures: photoacoustic experiments, Phys. status solidi B 220, 781-787 (2000)
[5] Diard, J.; Glandut, N.; Montella, C.; Sanchez, J.: One layer, two layers, etc. An introduction to the EIS study of multilayer electrodes. Part 1: theory, J. electroanal. Chem. 578, 247-257 (2005)
[6] Freger, V.: Diffusion impedance and equivalent circuit of a multilayer film, Electrochem. commun. 7, 957-961 (2005)
[7] Grossel, P.; Depasse, F.: Alternating heat diffusion in thermophysical depth profiles: multilayer and continuous descriptions, J. phys. D: appl. Phys. 31, 216-223 (1998)
[8] Pontrelli, G.; De Monte, F.: Mass diffusion through two-layer porous media: an application to the drug-eluting stent, Int. J. Heat mass transfer 50, 3658-3669 (2007) · Zbl 1113.80013
[9] Martelli, F.; Sassaroli, A.; Del Bianco, S.; Zaccanti, G.: Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model, Phy. med. Biol. 52, 2827-2843 (2007)
[10] Gilbert, S. H.; Mathias, R. T.: Analysis of diffusion delay in a layered medium, Biophys. J. 54, 603-610 (1988)
[11] De Monte, F.: Transient heat conduction in one-dimension composite slab. A natural analytic approach, Int. J. Heat mass transfer 43, 3607-3619 (2000) · Zbl 0964.80003
[12] Oturanc, G.; Sahin, A. Z.: Eigenvalue analysis of temperature distribution in composite walls, Int. J. Energ. res. 25, 1189-1196 (2001)
[13] Fukuda, M.; Kawai, H.: Diffusion of low molecular weight substances into a laminar film. 1: rigorous solution of the diffusion equations in a composite film of multiple layers, Polym. eng. Sci. POLYM ENG SCI 35, No. 8, 709-721 (1995)
[14] Hickson, R. I.; Barry, S. I.; Mercer, G. N.: Exact and numerical solutions for effective diffusivity and time lag through multiple layers, Anziam j. (E) 50, C682-C695 (2009) · Zbl 1359.80006
[15] Miller, J. R.; Weaver, P. M.: Temperature profiles in composite plates subject to time-dependent complex boundary conditions, Compos. struct. 59, 267-278 (2003)
[16] De Monte, F.: An analytic approach to the unsteady heat conduction processes in one-dimensional composite media, Int. J. Heat mass transfer 45, 1333-1343 (2002) · Zbl 0992.80006
[17] Sun, Y.; Wichman, I. S.: On transient heat conduction in a one-dimensional composite slab, Int. J. Heat mass transfer 47, 1555-1559 (2004)
[18] Fukuda, M.; Kawai, H.: Diffusion of low molecular weight substances into a fibre with skin-core structure – rigorous solution of the diffusion equations in a coaxial cylinder of multiple components, Polym. eng. Sci. 34, No. 4, 330-340 (1994)
[19] Lu, X.; Tervola, P.; Viljanen, M.: Transient analytical solution to heat conduction in a composite circular cylinder, Int. J. Heat mass transfer 49, 341-348 (2006) · Zbl 1189.74029
[20] Azeez, M. F. A.; Vakakis, A. F.: Axisymmetric transient solutions of the heat diffusion problem in layered composite media, Int. J. Heat mass transfer 43, 3883-3895 (2000) · Zbl 1073.80508
[21] Landman, K.; Mcguinness, M.: Mean action time for diffusive processes, J. appl. Math. decis. Sci. 4, No. 2, 125-141 (2000) · Zbl 0998.76083
[22] Mcnabb, A.; Wake, G. C.: Heat conduction and finite measures for transition times between steady states, IMA J. Appl. math. 47, No. 2, 192-206 (1991) · Zbl 0767.35018
[23] Mcnabb, A.: Mean action times, time lags and mean first passage times for some diffusion problems, Math. comput. Model. 18, No. 10, 123-129 (1993) · Zbl 0802.35122
[24] Ash, R.; Barrer, R. M.; Palmer, D. G.: Diffusion in multiple laminates, Brit. J. Appl. phys. 16, 873-884 (1965)
[25] Barrer, R. M.: Diffusion and permeation in heterogenous media, Diffusion in polymers, 165-215 (1968)
[26] Crank, J.: The mathematics of diffusion, (1957) · Zbl 0077.32604
[27] Graff, G. L.; Williford, R. E.; Burrows, P. E.: Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation, J. appl. Phys. 96, No. 4, 1840-1849 (2004)
[28] Kruczek, B.; Frisch, H. L.; Chapanian, R.: Analytical solution for the effective time lag of a membrane in a permeate tube collector in which Knudsen flow regime exists, J. membrane sci. 256, 57-63 (2005)
[29] Absi, J.; Smith, D. S.; Nait-Ali, B.; Granjean, S.; Berjonnaux, J.: Thermal response of two-layer systems: numerical simulation and experimental verification, J. eur. Ceram. soc. 25, 367-373 (2005)
[30] Ash, R.; Barrer, R. M.; Petropoulos, J. H.: Diffusion in heterogeneous media: properties of a laminated slab, Brit. J. Appl. phys. 14, 854-862 (1963)
[31] Hickson, R. I.; Barry, S. I.; Mercer, G. N.: Critical times in multilayer diffusion. Part 2: approximate solutions, Int. J. Heat mass transfer 52, 5784-5791 (2009) · Zbl 1177.80023
[32] Carslaw, H. S.; Jaeger, J. C.: Conduction of heat in solids, (1959) · Zbl 0029.37801
[33] matlab\textregistered , The MathWorks Inc., Natick, Massachusetts, <http://www.mathworks.com/products/matlab/>.
[34] FlexPDE, PDE Solutions Inc., Spokane Valley, <http://www.pdesolutions.com>.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.