zbMATH — the first resource for mathematics

A computational study of stabilized, low-order \(C^{0}\) finite element approximations of Darcy equations. (English) Zbl 1177.76191
Summary: We consider finite element methods for Darcy equations that are designed to work with standard, low order \(C ^{0}\) finite element spaces. Such spaces remain a popular choice in engineering practice because they offer the convenience of simple and uniform data structures and reasonable accuracy. A consistently stabilized method [A. Masud and T. J. R. Hughes, Comput. Methods Appl. Mech. Eng. 191, No. 39–40, 4341–4370 (2002; Zbl 1015.76047)] and a least-squares formulation [D. C. Jespersen, Math. Comput. 31, 873–880 (1977; Zbl 0383.65060)] are compared with two new stabilized methods. The first one is an extension of a recently proposed polynomial pressure projection stabilization of the Stokes equations [the authors and M. D. Gunzburger, SIAM J. Numer. Anal. 44, No. 1, 82–101 (2006; Zbl 1145.76015); the authors, Int. J. Numer. Methods Fluids 46, No. 2, 183–201 (2004; Zbl 1060.76569)]. The second one is a weighted average of a mixed and a Galerkin principles for the Darcy problem, and can be viewed as a consistent version of the classical penalty stabilization for the Stokes equations [F. Brezzi et al., J. Sci. Comput. 22–23, 119–145 (2005; Zbl 1103.76031)]. Our main conclusion is that polynomial pressure projection stabilization is a viable stabilization choice for low order \(C ^{0}\) approximations of the Darcy problem.

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI
[1] Arnold D, Boffi D, Falk R (2002) Approximation by quadrilateral finite elements. Math Comput 71:909–922 · Zbl 0993.65125 · doi:10.1090/S0025-5718-02-01439-4
[2] Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38:173–199 · Zbl 1008.76036 · doi:10.1007/s10092-001-8180-4
[3] Bochev P, Gunzburger M (1998) Least-squares finite element methods for elliptic equations. SIAM Rev 40(4):789–837 · Zbl 0914.65108 · doi:10.1137/S0036144597321156
[4] Bochev P, Gunzburger M (2005) On least-squares finite element methods for the Poisson equation and their connection to the Dirichlet and Kelvin principles. SIAM J Num Anal 43(1):340–362 · Zbl 1128.76031 · doi:10.1137/S003614290443353X
[5] Bochev P, Dohrmann C, Gunzburger MD (2005) Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J Num Anal (To appear) · Zbl 1145.76015
[6] Bramble J, Lazarov R, Pasciak J (1994) A least squares approach based on a discrete minus one inner product for first order systems. Technical report 94-32, Mathematical Science Institute, Cornell University · Zbl 0870.65104
[7] Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer Berlin Heidelberg, New York · Zbl 0788.73002
[8] Brezzi F, Pitkaranta J (1984). On stabilization of finite element approximations of the Stokes equations. In: Hackbusch W (eds). Efficient solution of elliptic systems. Vieweg, Wiesbaden
[9] Brezzi F, Hughes TJR, Marini LD, Masud A (2005) Mixed discontinuous Galerkin methods for Darcy flow. J Sci Comput 22(23):119–145 · Zbl 1103.76031 · doi:10.1007/s10915-004-4150-8
[10] Burman E, Hansbo P (2002) A unified stabilized method for Stokes and Darcy’s equations. Chalmers finite element center preprint 2002–2015. Chalmers University of Technology, Goteberg
[11] Carey GF, Bicken G, Carey V, Berger C, Sanchez J (2001) Locally constrained projections. Int J Numer Methods Eng 50:549–577 · Zbl 1006.76051 · doi:10.1002/1097-0207(20010130)50:3<549::AID-NME35>3.0.CO;2-S
[12] Codina R, Blasco J (1997) A finite element formulation for the Stokes problem allowing equal order velocity-pressure interpolation. Comput Methods Appl Mech Eng 143:373–391 · Zbl 0893.76040 · doi:10.1016/S0045-7825(96)01154-1
[13] Dohrmann C, Bochev P (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Methods Fluids 46:183–201 · Zbl 1060.76569 · doi:10.1002/fld.752
[14] Fix G, Gunzburger M (1978) On least squares approximations to indefinite problems of the mixed type. Int J Numer Methods Eng 12:453–469 · Zbl 0378.76046 · doi:10.1002/nme.1620120307
[15] Fix G, Gunzburger M, Nicolaides R (1979) On finite element methods of the least-squares type. Comput Math Appl 5:87–98 · Zbl 0422.65064 · doi:10.1016/0898-1221(79)90062-2
[16] Franca L, Russo A (1996) Deriving upwinding, mass lumping and selective reduced integration by residual free bubbles. Appl Math Lett 9:83–88 · Zbl 0903.65082 · doi:10.1016/0893-9659(96)00078-X
[17] Guermond J.L, Quartapelle L (1998) On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Num Math 80:207–238 · Zbl 0914.76051 · doi:10.1007/s002110050366
[18] Jesperson D (1977) A least-squares decomposition method for solving elliptic equations. Math Comput 31:873–880 · Zbl 0383.65060 · doi:10.1090/S0025-5718-1977-0461948-0
[19] Mardal K, Tai XC, Winther R (2002) A robust finite element method for Darcy–Stokes flow. SIAM J Numer Anal 40(5):1605–1631 · Zbl 1037.65120 · doi:10.1137/S0036142901383910
[20] Masud A, Hughes TJR (2002) A stabilized finite element method for Darcy flow. Comput Methods Appl Mech Eng 191:4341–4370 · Zbl 1015.76047 · doi:10.1016/S0045-7825(02)00371-7
[21] Russel T, Naff RL, Wilson JD (2002). Shape functions for three-dimensional control-volume mixed finite-element methods on irregular grids. In: Hassanizadeh SM et al (eds). Computational methods in water resources, vol 1. Elsevier, Amsterdam, pp 359–366
[22] Silvester DJ (1994) Optimal low order finite element methods for incompressible flow. Comput Methods Appl Mech Eng 111:357–368 · Zbl 0844.76059 · doi:10.1016/0045-7825(94)90139-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.