×

zbMATH — the first resource for mathematics

Experimental study of an impact oscillator with viscoelastic and Hertzian contact. (English) Zbl 1177.70003

MSC:
70-05 Experimental work for problems pertaining to mechanics of particles and systems
70F35 Collision of rigid or pseudo-rigid bodies
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wiercigroch, M., Kraker, B.: Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities. Cambridge University Press, Cambridge, UK (2000) · Zbl 0953.70001
[2] Mann, B.P., Garg, N.K., Young, K.A., Helvey, A.M.: Milling bifurcations from structural asymmetry and nonlinear regeneration. Nonlinear Dyn. 42, 319–337 (2005) · Zbl 1142.70327 · doi:10.1007/s11071-005-5719-y
[3] Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145(2), 279–287 (1991) · doi:10.1016/0022-460X(91)90592-8
[4] Moore, D.B., Shaw, S.W.: The experimental response of an impacting pendulum system. Int. J. Non-Linear Mech. 25, 1–16 (1990) · doi:10.1016/0020-7462(90)90034-7
[5] Quinn, D.D.: Finite duration impacts with external forces. J. Appl. Mech. 72, 778–784 (2005) · Zbl 1111.74603 · doi:10.1115/1.1875552
[6] Bayly, P.V., Virgin, L.N.: An experimental study of an impacting pendulum. J. Sound Vib. 164(2), 363–374 (1993) · Zbl 0822.70015 · doi:10.1006/jsvi.1993.1220
[7] Bayly, P.V.: On the spectral signature of weakly bilinear oscillators. J. Vib. Acoust. 118, 353–361 (1996) · doi:10.1115/1.2888190
[8] Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983) · Zbl 0561.70022 · doi:10.1016/0022-460X(83)90407-8
[9] Zeebroeck, M.V., Tijskens, E., Liedekerke, P.V., Deli, V., Baerdemaeker, J.D., Ramon, H.: Determination of the dynamical behavior of biological materials during impact using a pendulum device. J. Sound Vib. 266, 465–480 (2003) · doi:10.1016/S0022-460X(03)00579-0
[10] Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 97, 440–445 (1975) · doi:10.1115/1.3423596
[11] Ladislav, P., Paterka, F.: Impact oscillator with Hertz’s model of contact. Meccanica 38, 99–114 (2003) · Zbl 1023.70011 · doi:10.1023/A:1022075519038
[12] Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985) · Zbl 0599.73108
[13] Hertz, H.: On the elastic contact of solids. J. für die reine und Angewandte Mathematik 92, 156–171 (1881) · JFM 14.0807.01
[14] Slade, K.N., Virgin, L.N., Bayly, P.V.: Extracting information from interimpact intervals in a mechanical oscillator. Phys. Rev. E 56(3), 3705–3708 (1997) · doi:10.1103/PhysRevE.56.3705
[15] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)
[16] Mann, B.P., Koplow, M.A.: Symmetry breaking bifur-cations in a parametrically excited pendulum. Nonlinear Dyn. 46(4), 427–437 · Zbl 1170.70359
[17] Coleman, T., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optimization 6, 418–445 (1996) · Zbl 0855.65063 · doi:10.1137/0806023
[18] Henon, M.: On the numerical computation of Poincaré maps. Phys. D 5, 412–414 (1982) · Zbl 1194.37004 · doi:10.1016/0167-2789(82)90034-3
[19] Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, UK (2003) · Zbl 1050.62093
[20] Virgin, L.N.: Introduction to Experimental Nonlinear Dynamics, 2nd edn. Cambridge University Press, Cambridge, UK (2000) · Zbl 0966.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.