zbMATH — the first resource for mathematics

Any algebraic variety in positive characteristic admits a projective model with an inseparable Gauss map. (English) Zbl 1177.14092
Summary: We determine the values attained by the rank of the Gauss map of a projective model for a fixed algebraic variety in positive characteristic \(p\). In particular, it is shown that any variety in \(p>0\) has a projective model such that the differential of the Gauss map is identically zero. On the other hand, we prove that there exists a product of two or more projective spaces admitting an embedding into a projective space such that the differential of the Gauss map is identically zero if and only if \(p=2\).

14N05 Projective techniques in algebraic geometry
Full Text: DOI
[1] Griffiths, P.; Harris, J., Algebraic geometry and local differential geometry, Ann. sci. école norm. sup. (4), 12, 355-432, (1979) · Zbl 0426.14019
[2] Zak, F.L., Tangents and secants of algebraic varieties, () · Zbl 0795.14018
[3] Fukasawa, S., Varieties with non-linear Gauss fibers, Math. ann., 334, 235-239, (2006) · Zbl 1093.14073
[4] Kaji, H., On the tangentially degenerate curves, J. London math. soc. (2), 33, 430-440, (1986) · Zbl 0565.14017
[5] Kaji, H., On the Gauss maps of space curves in characteristic \(p\), Compos. math., 70, 177-197, (1989) · Zbl 0692.14015
[6] Kaji, H., On the Gauss maps of space curves in characteristic \(p\), II, Compos. math., 78, 261-269, (1991) · Zbl 0756.14021
[7] Noma, A., Gauss maps with nontrivial separable degree in positive characteristic, J. pure appl. algebra, 156, 81-93, (2001) · Zbl 0974.14037
[8] Rathmann, J., The uniform position principle for curves in characteristic \(p\), Math. ann., 276, 565-579, (1987) · Zbl 0595.14041
[9] Wallace, A.H., Tangency and duality over arbitrary fields, Proc. London math. soc. (3), 6, 321-342, (1956) · Zbl 0072.16002
[10] Kleiman, S.L., Tangency and duality, (), 163-226
[11] S. Fukasawa, H. Kaji, Existence of a birational embedding with inseparable Gauss map for a projective variety, preprint, 2008 May, unpublished · Zbl 1158.14043
[12] Fukasawa, S.; Kaji, H., The separability of the Gauss map and the reflexivity for a projective surface, Math. Z., 256, 699-703, (2007) · Zbl 1118.14058
[13] Bourbaki, N., Éléments de mathématique, algèbre, (1959), Hermann Paris, (Chapitre 9) · Zbl 0102.25503
[14] Matsumura, H., Commutative ring theory, () · Zbl 0211.06501
[15] Zariski, O.; Samuel, P., Commutative algebra, (), Second Printing · Zbl 0121.27901
[16] Fukasawa, S.; Kaji, H., Existence of a non-reflexive embedding with birational Gauss map for a projective variety, Math. nachr., 281, 1412-1417, (2008) · Zbl 1158.14043
[17] Kleiman, S.L.; Piene, R., On the inseparability of the Gauss map, (), 107-129 · Zbl 0758.14032
[18] R. Piene, Numerical characters of a curve in projective \(n\)-space, in: Real and Complex Singularities, Oslo 1976, pp. 475-495
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.