×

zbMATH — the first resource for mathematics

Modeling 3D crack propagation in unreinforced concrete using PUFEM. (English) Zbl 1176.74180
Summary: Concrete is a quasi-brittle material, where tensile failure involves progressive micro-cracking, debounding and other complex irreversible processes of internal damage. Strain-softening is a dominate feature and advanced numerical schemes have to be applied in order to circumvent the ill-posedness of the boundary-value problem to deal with. Throughout the paper we pursue the cohesive zone approach, where initialization and coalescence of micro-cracks is lumped into the cohesive fracture process zone in terms of accumulation of damage. We develop and employ a (discrete) constitutive description of the cohesive zone, which is based on a transversely isotropic traction separation law. The model reflects an exponential decreasing traction with respect to evolving opening displacement and is based on the theory of invariants. Non-negativeness of the damage dissipation is proven and the associated numerical embedded representation is based on the partition of unity finite element method. A consistent linearization of the method is presented, where particular attention is paid to the (cohesive) traction terms. Based on the proposed concept three numerical examples are studied in detail, i.e. a double-notched specimen under tensile loading, a four point shear test and a pull-out test of unreinforced concrete. The computational results show mesh-independency and good correlation with experimental results.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
Software:
FEAP; Netgen
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alfaiate, J.; Wells, G.N.; Sluys, L.J., On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture, Engrg. fract. mech., 69, 661-686, (2002)
[2] Armero, F.; Garikipati, K., Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, (), 547-561
[3] Armero, F.; Garikipati, K., An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Int. J. solids and structures, 33, 2863-2885, (1996) · Zbl 0924.73084
[4] M. Arrea, A.R. Ingraffea, Mixed mode crack propagation in mortar and concrete, Technical Report 81-113, Department of Structural Engineering, School of Civil and Environmental Engineering, Cornell University, 1982
[5] Barenblatt, G.I., The mathematical theory of equilibrium of cracks in brittle fracture, Adv. appl. mech., 7, 55-129, (1962)
[6] Bathe, K.-J., Finite element procedures, (1996), Prentice-Hall Englewood Cliffs, NJ
[7] Baz̆ant, Z.P.; Pijaudier-Cabot, G., Nonlocal continuum damage, localization instability and convergence, J. appl. mech., 55, 287-293, (1988) · Zbl 0663.73075
[8] Belytschko, T.; Fish, J.; Engelmann, A., A finite element with embedded localization zones, Comput. methods appl. mech. engrg., 70, 59-89, (1988) · Zbl 0653.73032
[9] Bhattacharjee, S.S.; Léger, P., Application of NLFM models to predict cracking in concrete gravity dams, J. struct. engrg., ASCE, 120, 1255-1271, (1994)
[10] Chaboche, A.; Girard, R.; Levasseur, P., On the interface debounding models, Int. J. damage, 6, 220-257, (1997)
[11] E.W.V. Chaves, A three dimensional setting for strong discontinuities modelling in failure mechanics, Ph.D. Thesis, Escuela Tcnica Superior de Ingenieros de Caminos, Universidad Politcnica de Catalua, Spain, 2003 · Zbl 1118.74002
[12] Coleman, B.D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. ration. mech. anal., 13, 167-178, (1963) · Zbl 0113.17802
[13] de Borst, R., Some recent issues in computational failure mechanics, Int. J. numer. methods engrg., 52, 63-95, (2001)
[14] de Borst, R.; Sluys, L.J.; Hüllhaus, H.B.; Pamin, J., Fundamental issues in finite element analysis of localization of deformation, Engrg. comput., 10, 99-121, (1993)
[15] Dugdale, D.S., Yielding of steel sheets containing slits, J. mech. phys. solids, 8, 100-104, (1960)
[16] Durate, C.A.; Oden, J.T., H-p clouds—an h-p meshless method, Numer. methods part. diff. equat., 12, 673-705, (1996) · Zbl 0869.65069
[17] Etse, G., Finite element analysis of failure response behavior of anchor bolts in concrete, Nucl. engrg. design, 179, 245-252, (1998)
[18] Gasser, T.C.; Holzapfel, G.A., Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3d problems with an application to the dissection analysis of soft biological tissues, Comput. methods appl. mech. engrg., 192, 5059-5098, (2003) · Zbl 1088.74541
[19] Gasser, T.C.; Holzapfel, G.A., Necking phenomena of a fiber-reinforced bar modeled by multisurface plasticity, (), 211-220 · Zbl 1039.74006
[20] Geers, M.G.D.; de Borst, R.; Peerlings, R.H.J., Damage and crack modeling in single-edge and double-edge notched beams, Engrg. fract. mech., 65, 247-261, (2000)
[21] Gravouil, A.; Moës, N.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets—part II: level set update, Int. J. numer. methods engrg., 53, 2569-2586, (2002) · Zbl 1169.74621
[22] Hillerborg, A.; Modeer, M.; Petersson, P.E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement concr. res., 6, 773-782, (1976)
[23] Holzapfel, G.A., Nonlinear solid mechanics. A continuum approach for engineering, (2000), John Wiley & Sons Chichester · Zbl 0980.74001
[24] Jirásek, M., Comparative study on finite elements with embedded discontinuities, Comput. methods. appl. mech. engrg., 188, 307-330, (2000) · Zbl 1166.74427
[25] Jirasek, M.; Patzak, B., Consistent tangent stiffness for nonlocal damage models, Comput. struct., 80, 1279-1293, (2002)
[26] Jirásek, M.; Zimmermann, T., Embedded crack model: part II. combination with smeared cracks, Int. J. numer. methods engrg., 50, 1291-1305, (2001) · Zbl 1013.74068
[27] H. Krenchel, J.A. Bickley, Pullout testing of concrete, Historical background and scientific level today. Technical Report 6, The Nordic Concrete Federation, Nordic Concrete Research, 1985
[28] R. de Borst, Non-Linear analysis of frictional materials, Ph.D. Thesis, Delft University of Technology, Netherlands, 1986
[29] Melenk, J.M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. methods appl. mech. engrg., 139, 289-314, (1996) · Zbl 0881.65099
[30] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 131-150, (1999) · Zbl 0955.74066
[31] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model, Int. J. numer. methods engrg., 53, 2549-2568, (2002) · Zbl 1169.74621
[32] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. appl. mech., 54, 525-531, (1987) · Zbl 0626.73010
[33] Needleman, A., An analysis of decohesion along an imperfect interface, Int. J. fract., 42, 21-40, (1990)
[34] Nguyen, O.; Repetto, E.A.; Ortiz, M.; Radovitzky, R.A., A cohesive model for fatigue crack growth, Int. J. fract., 110, 351-369, (2001)
[35] Oliver, J., Continuum modelling of strong discontinuities in solid mechanics, (), 455-479
[36] Oliver, J., On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations, Int. J. solids struct., 37, 7207-7229, (2000) · Zbl 0994.74004
[37] Oliver, J.; Cervera, M.; Manzoli, O., Strong discontinuities and continuum plasticity models: the strong discontinuity approach, Int. J. plast., 15, 319-351, (1999) · Zbl 1057.74512
[38] Oliver, J.; Huespe, A.E.; Pulido, M.D.G.; Chaves, E., From continuum mechanics to fracture mechanics: the strong discontinuity approach, Engrg. fract. mech., 69, 113-136, (2002)
[39] Ortiz, M.; Leroy, Y.; Needleman, A., A finite element method for localized failure analysis, Comput. methods appl. mech. engrg., 61, 189-214, (1987) · Zbl 0597.73105
[40] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. numer. methods engrg., 44, 1267-1282, (1999) · Zbl 0932.74067
[41] Papoulia, K.D.; Sam, C.-H.; Vavasis, S.A., Time continuity in cohesive finite element modeling, Int. J. numer. methods engrg., 58, 679-701, (2003) · Zbl 1032.74676
[42] Reinhardt, H.W.; Cornelissen, H.A.W.; Hordijk, D.A., Tensile tests and failure analysis of concrete, J. struct. engrg., ASCE, 112, 2462-2477, (1986)
[43] J.G. Rots, Computational modeling of concrete fracture, Ph.D. Thesis, Delft University of Technology, Netherlands, 1988
[44] Rots, J.G.; Blaauwendraad, J., Crack models for concrete: discrete or smeared? multi-directional or rotating?, Heron, 34, 1-59, (1989)
[45] Rots, J.G.; de Borst, R., Analysis of mixed-mode fracture in concrete, J. engrg. mech., 113, 1739-1758, (1987)
[46] Rots, J.G.; Nauta, P.; Kusters, G.M.A.; Blaauwendraad, J., Smeared crack approach and fracture localization in concrete, Heron, 30, 1, 1-48, (1985)
[47] E. Schlangen, Experimental and numerical analysis of fracture processes in concrete, Ph.D. Thesis, Delft University of Technology, Netherlands, 1993
[48] J. Schöberl, NETGEN—A 3D tetrahedral mesh generator—Version 4.2, University Linz, Austria, 2002
[49] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1998), Springer-Verlag New York · Zbl 0934.74003
[50] Simo, J.C.; Oliver, J., A new approach to the analysis and simulation of strain softening in solids, (), 25-39
[51] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[52] Sluys, L.J.; Berends, A.H., Discontinuous failure analysis for mode-I and mode-II localization problems, Int. J. solids struct., 35, 4257-4274, (1998) · Zbl 0933.74060
[53] Spencer, A.J.M., Theory of invariants, () · Zbl 0339.15012
[54] Spencer, A.J.M., Constitutive theory for strongly anisotropic solids, (), 1-32 · Zbl 0588.73117
[55] Steinmann, P.; Larsson, R.; Runesson, K., On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities, Int. J. solids struct., 34, 969-990, (1997) · Zbl 0947.74508
[56] Sukumar, N.; Srolovitz, D.J.; Baker, T.J.; Prévost, J.-H., Brittle fracture in polycrystalline microstructures with the extended finite element method, Int. J. numer. methods engrg., 56, 2015-2037, (2003) · Zbl 1038.74652
[57] R.L. Taylor, FEAP—A Finite Element Analysis Program—Version 7.1, University of California at Berkeley, 1999
[58] R.L. Taylor, FEAP—A Finite Element Analysis Program—Version 7.3, University of California at Berkeley, 2000
[59] Tvergaard, V.; Hutchinson, J.W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. mech. phys. solids, 40, 1377-1397, (1992) · Zbl 0775.73218
[60] G.N. Wells, Discontinuous modelling of strain localization and failure, Ph.D. Thesis, Delft University of Technology, Netherlands, 2001
[61] Wells, G.N.; de Borst, R.; Sluys, L.J., A consistent geometrically non-linear approach for delamination, Int. J. numer. methods engrg., 54, 1333-1355, (2002) · Zbl 1086.74043
[62] Wells, G.N.; Sluys, L.J., A new method for modelling cohesive cracks using finite elements, Int. J. solids struct., 50, 2667-2682, (2001) · Zbl 1013.74074
[63] Wells, G.N.; Sluys, L.J., Three-dimensional embedded discontinuity model for brittle fracture, Int. J. solids struct., 38, 897-913, (2001) · Zbl 1004.74065
[64] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, the basis, vol. 1, (2000), Butterworth Heinemann Oxford · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.