×

Effect of interface fracture on the tensile deformation of fiber-reinforced elastomers. (English) Zbl 1176.74160

Summary: The influence of interface properties (strength and toughness) on the tensile behavior of fiber-reinforced elastomers deformed perpendicularly to the fibers was studied using computational micromechanics. Numerical simulations were performed by means of the finite element analysis of a representative volume element of the composite microstructure. The effect of finite deformations and of interface fracture was included in the simulations, the latter through a bidimensional and quadratic interface element inserted at the fiber/matrix interfaces. A parametrical study was carried out to assess the effect of interface strength and toughness on the tensile strength and damage micromechanisms. It was found that the onset of damage and tensile strength were controlled by interface strength while the evolution of damage depended on interface toughness.

MSC:

74R10 Brittle fracture
74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abaqus, Users’ Manual, version 6.7, ABAQUS, Inc., 2008.
[2] Agoras, M.; López-Pamiés, O.; Ponte-Castañeda, P.: A general hyperelastic model for incompressible fiber-reinforced, Journal of the mechanics and physics of solids 57, 268-286 (2009) · Zbl 1197.74025 · doi:10.1016/j.jmps.2008.10.014
[3] Brockenbrough, J. R.; Suresh, S.; Wienecke, H. A.: Deformation of metal – matrix composites with continuous fibers: geometrical effects of fiber distribution and shape, Acta metallurgica et materialia 39, 735-752 (1991)
[4] Cornwell, L. R.; Schapery, R. A.: SEM study of microcracking in strained solid propellant, Metallography 8, 445-452 (1975)
[5] Crisfield, M. A.: Snap-through and snap-back response in concrete structures and the dangers of under-integration, International journal for numerical methods in engineering 22, 751-767 (1986) · Zbl 0586.73115 · doi:10.1002/nme.1620220314
[6] Debotton, G.: Transversely isotropic sequentially laminated composite in finite elasticity, Journal of the mechanics and physics of solids 53, 1334-1361 (2005) · Zbl 1120.74319 · doi:10.1016/j.jmps.2005.01.006
[7] Gasser, T. C.; Ogden, R. W.; Holzapfel, G. A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, Journal of the royal society interface 3, 15-35 (2006)
[8] Gent, A. N.; Lindley, P. B.: Internal rupture of bonded rubber cylinders in tension, Proceedings of the royal society of London A 249, 195-205 (1958)
[9] González, C.; Llorca, J.: Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling, Composites science and technology 67, 2795-2806 (2007)
[10] González, C.; Segurado, J.; Llorca, J.: Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models, Journal of the mechanics and physics of solids 52, 1573-1593 (2004) · Zbl 1103.74020 · doi:10.1016/j.jmps.2004.01.002
[11] Guo, Z. Y.; Peng, X. Q.; Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus, Journal of the mechanics and physics of solids 54, 1952-1971 (2006) · Zbl 1120.74634 · doi:10.1016/j.jmps.2006.02.006
[12] Hazanov, S.; Huet, C.: Order relationships for boundary condition effects in heterogeneous bodies smaller than the representative volume, Journal of the mechanics and physics of solids 42, 1995-2011 (1994) · Zbl 0821.73005 · doi:10.1016/0022-5096(94)90022-1
[13] Khisaeva, Z. F.; Ostoja-Starzewski, M.: On the size of RVE in finite elasticity of random composites, Journal of elasticity 85, 153-173 (2006) · Zbl 1104.74008 · doi:10.1007/s10659-006-9076-y
[14] Liechti, K. M.; Wu, J. -D.: Cohesive law and notch sensitivity of adhesive joints, Journal of the mechanics and physics of solids 49, 1039-1072 (2001)
[15] Llorca, J.; Needleman, A.; Suresh, S.: The bauschinger effect in whisker-reinforced metal – matrix composites, Scripta metallurgica et materialia 24, 1203-1208 (1990)
[16] López-Pamiés, O.; Ponte-Castañeda, P.: On the overall behaviour, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I: Theory, Journal of the mechanics and physics of solids 54, 807-830 (2006) · Zbl 1120.74726 · doi:10.1016/j.jmps.2005.10.006
[17] Matous, K.: Damage evolution in particulate composite materials, International journal of solids and structures 40, 1489-1503 (2003) · Zbl 1032.74656 · doi:10.1016/S0020-7683(02)00669-8
[18] Matous, K.; Geubelle, P. H.: Multiscale modelling of particle debonding elastomers subjected to finite deformations, International journal for numerical methods in engineering 65, 190-223 (2006) · Zbl 1178.74137 · doi:10.1002/nme.1446
[19] Merodio, J.; Ogden, R. W.: Mechanical response of fiber-reinforced incompressible nonlinear elastic solids, International journal of nonlinear mechanics 40, 213-227 (2005) · Zbl 1349.74057
[20] Monetto, I.; Drugan, W. J.: A micromechanics-based nonlocal constitutive equation for elastic composites containing randomly oriented spheroidal heterogeneities, Journal of the mechanics and physics of solids 52, 359-393 (2004) · Zbl 1106.74394 · doi:10.1016/S0022-5096(03)00103-0
[21] Moraleda, J.; Segurado, J.; Llorca, J.: Finite deformation of porous elastomers: a computational micromechanics approach, Philosophical magazine 87, 5607-5627 (2007)
[22] Moraleda, J.; Segurado, J.; Llorca, J.: Finite deformation of incompressible fiber-reinforced elastomers: a computational micromechanics approach, Journal of the mechanics and physics of solids 57, 1596-1613 (2009) · Zbl 1371.74023
[23] Ortiz, M.; Pandolfi, A.: Finite deformation irreversible cohesive elements for three-dimensional crack propagation analysis, International journal for numerical methods in engineering 44, 1267-1282 (1999) · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[24] Ostoja-Starzewski, M.; Du, X.; Khisaeva, Z.; Li, W.: Comparisons of the size of representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures, International journal of multiscale computational engineering 5, 73-82 (2007)
[25] Park, S. W.; Schapery, R. A.: A viscoelastic constitutive model for particulate composites with growing damage, International journal of solids and structures 34, 931-947 (1997) · Zbl 0947.74511 · doi:10.1016/S0020-7683(96)00066-2
[26] Pierard, O.; Llorca, J.; Segurado, J.; Doghri, I.: Micromechanics of particle-reinforced elasto-viscoplastic composites: numerical simulations versus affine homogenization, International journal of plasticity 23, 1041-1060 (2007) · Zbl 1119.74014 · doi:10.1016/j.ijplas.2006.09.003
[27] Ponte-Castañeda, P.; Tiberio, E.: A second-order homogenization method in finite elasticity and applications to black-filled elastomers, Journal of the mechanics and physics of solids 48, 1389-1411 (2000) · Zbl 0984.74070 · doi:10.1016/S0022-5096(99)00087-3
[28] Qiu, G. Y.; Pencel, T. J.: Remarks on the behaviour of simple directionally reinforced incompressible nonlinearly elastic solids, Journal of elasticity 49, 1-30 (1997) · Zbl 0964.74008 · doi:10.1023/A:1007410321319
[29] Rintoul, M. D.; Torquato, S.: Reconstruction of the structure of dispersions, Journal of colloid and interface science 186, 467-476 (1997) · Zbl 0925.82105
[30] Segurado, J.; Llorca, J.: A new three-dimensional interface finite element to simulate fracture in composites, International journal of solids and structures 41, 2977-2993 (2004) · Zbl 1119.74609 · doi:10.1016/j.ijsolstr.2004.01.007
[31] Segurado, J.; Llorca, J.: A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites, Acta materialia 53, 4931-4942 (2005)
[32] Segurado, J.; Llorca, J.: Computational micromechanics of composites: the effect of particle spatial distribution, Mechanics of materials 38, 873-883 (2006)
[33] Sorensen, B. F.: Cohesive law and notch sensitivity of adhesive joints, Acta materialia 50, 1053-1061 (2002)
[34] Totry, E.; González, C.; Llorca, J.: Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics, Composites science and technology 68, 3128-3136 (2008)
[35] Tvergaard, V.; Hutchinson, J. W.: The influence of plasticity on mixed mode interface toughness, Journal of the mechanics and physics of solids 41, 1119-1135 (1993) · Zbl 0775.73219 · doi:10.1016/0022-5096(93)90057-M
[36] Vratsanos, L. A.; Farris, R. J.: A predictive model for the mechanical behavior of particulate composites. Part I: Model derivation, Polymer engineering and science 33, 1458-1464 (1993)
[37] Zhong, X. A.; Knauss, W. G.: Analysis of interfacial failure in particle-filled elastomers, Journal of engineering materials and technology 119, 198-204 (1997)
[38] Zhu, Y.; Liechti, K. M.; Ravi-Chandar, K.: Direct extraction of rate-dependent traction separation laws for polyurea/steel interfaces, International journal of solids and structures 46, 31-51 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.