zbMATH — the first resource for mathematics

A discrete transfer function model to determine the dynamic stability of a vendor managed inventory supply chain. (English) Zbl 1175.90138
Summary: This paper considers a well-established production and distribution scheduling algorithm, called the Automatic Pipeline, Inventory and Order Based Production Control System (APIOBPCS) within a Vendor Managed Inventory (VMI) supply chain. It develops a transfer function model of the system using causal loop diagrams, block diagrams, difference equations and \(z\) -transforms. Important insights into the VMI supply chain are derived from the mathematical model pertaining to the stability and robustness of the VMI system. Analysis confirmed by dynamic simulation clearly demonstrates instability arising from poor design. We also demonstrate its avoidance via our recommended parameter settings for tuning the two feedback loops within the supply chain for a specific production delay. The procedure is readily extended for other production delays and distributions.

90B30 Production models
90B05 Inventory, storage, reservoirs
Full Text: DOI
[1] DOI: 10.1057/jors.1966.76 · doi:10.1057/jors.1966.76
[2] ASELTINE J. A., Transform Methods in Linear System Analysis (1958) · Zbl 0081.32101
[3] BESSLER S. A., Navel Research Logistics Quarterly 15 pp 137– (1968)
[4] BISSELL C. C., Control Engineering (1996) · Zbl 1034.93500
[5] BONNEY M. C., Engineering Costs and Production Economics 15 pp 189– (1988)
[6] DOI: 10.1016/0925-5273(94)90069-8 · doi:10.1016/0925-5273(94)90069-8
[7] DOI: 10.1016/0360-8352(78)90010-4 · doi:10.1016/0360-8352(78)90010-4
[8] CHRISTOPHER, M. 1992.Logistics and Supply Chain Management: Strategies for Reducing Costs and Improving Services, Vol. X, 166–169. London: Pitman.
[9] DEJONCKHESRE, J., DISNEY, S. M., LAMBRECHT, M. R. and TOWILL, D. R. Matching your orders to the needs and economies of your supply chain. Proceedings of the 7th EUROMA Conference. June4-7, Ghent, Belgium. Edited by: Van Dierdonck, R. and Vereecke, A. pp.181–184. Operations Management-Crossing Borders and Boundaries: The Changing Role of Operations,
[10] DEJONCKHESRE J., Measuring the bullwhip effect: a control theoretic approach to analyse forecasting induced Bullwhip in order-up-to policies (2001)
[11] DOI: 10.1049/tpe.1967.0011 · doi:10.1049/tpe.1967.0011
[12] DISNEY, S. M. 2001. ”Application of discrete linear control theory to Vendor Managed Inventory”. UK: Cardiff Business School, Cardiff University. PhD Thesis,
[13] DOI: 10.1108/09600039710170566 · doi:10.1108/09600039710170566
[14] DOI: 10.1177/014233128901100406 · doi:10.1177/014233128901100406
[15] FORRESTER J., Industrial Dynamics (1961)
[16] FRANKLIN G. F., Digital Control of Dynamic Systems (1990) · Zbl 0697.93002
[17] DOI: 10.1287/mnsc.13.7.558 · doi:10.1287/mnsc.13.7.558
[18] DOI: 10.1002/mde.4090120506 · doi:10.1002/mde.4090120506
[19] DOI: 10.1016/0925-5273(96)00009-6 · doi:10.1016/0925-5273(96)00009-6
[20] GRUBBSTRÖM R. W., Working Paper No. 254, in: The fundamental equations of MRP theory in discrete time (1998)
[21] DOI: 10.1016/S0925-5273(00)00050-5 · doi:10.1016/S0925-5273(00)00050-5
[22] DOI: 10.1080/00207540050205046 · Zbl 1081.90506 · doi:10.1080/00207540050205046
[23] DOI: 10.1016/S0969-7012(97)00028-2 · doi:10.1016/S0969-7012(97)00028-2
[24] HOUHS C. H., Digital Control Systems (1985)
[25] JOHN S., International Journal of Manufacturing System Design 1 pp 283– (1994)
[26] JURY E. L., Sampled Data Control Systems (1958) · Zbl 0092.30702
[27] JURY E. I., Theory and Application of the z-Transform Method (1964)
[28] MAGEE, J. F. 1958.Production Planning and Inventory Control, 80–83. New York: McGraw-Hill.
[29] DOI: 10.1108/09574099710805664 · doi:10.1108/09574099710805664
[30] DOI: 10.1109/TAC.1965.1098179 · doi:10.1109/TAC.1965.1098179
[31] McCuLLEN P., International Journal of Operations Management and Control 26 pp 24– (2000)
[32] NAIM, M. M. and TOWILL, D. R. What’s in the Pipeline? Proceedings of the 2nd International Symposium on Logistics. July11-12. pp.135–142.
[33] NISE N. S., Control Systems Engineering (1995) · Zbl 1355.93001
[34] DOI: 10.1080/00207548708919822 · doi:10.1080/00207548708919822
[35] DOI: 10.2307/1907849 · Zbl 0046.37804 · doi:10.2307/1907849
[36] DOI: 10.1287/mnsc.35.3.321 · doi:10.1287/mnsc.35.3.321
[37] TANG, O. Modelling stochastic lead-times in a production-inventory system using the Laplace transform method. The 15th International Conference on Production Research, ICPR-IS Manufacturing for a Global Market. August9-131999, Limerick, Ireland. Edited by: Hillery, M. T. and Lewis, H. J. pp.439–442.
[38] TANG, O. 2000b. ”Planning and re-planning within the material requirements planning environment-a transform approach”. Sweden: Linköping University. PhD Thesis, Profil 16,
[39] TOWILL D. R., Transfer Function Techniques for Control Engineers (1970)
[40] DOI: 10.1080/00207547708943099 · doi:10.1080/00207547708943099
[41] DOI: 10.1080/00207548208947797 · doi:10.1080/00207548208947797
[42] TOWILL D. R., MASTS Occasional Paper No. 61, in: Fundamental theory of bullwhip induced by exponential smoothing algorithm (1999)
[43] DOI: 10.1080/09537289408919474 · doi:10.1080/09537289408919474
[44] DOI: 10.1016/0167-188X(82)90055-6 · doi:10.1016/0167-188X(82)90055-6
[45] TOWILL, D. R., LAMBRECHT, M. R., DISNEY, S. M. and DEJONCKHESRE, J. Every supply chain is a filter. Proceedings of the 8th EUROMA Conference. June3-4, Bath, UK.
[46] TUSTIN A., The Mechanism of Economic Systems (1953) · Zbl 0053.41705
[47] VASSIAN H. J., Journal of the Operations Research Society of America 3 pp 272– (1954) · doi:10.1287/opre.3.3.272
[48] WALLER M., Journal of Business Logistics 20 pp 183– (1999)
[49] WIKNER J., Working Paper 220, in: A discounted cash flow approach in dynamic modelling (1994)
[50] WIKNER J., Working Paper 223, in: Continuous-time dynamic modelling of lead-times (1994)
[51] WILKINSON S., Control pp 23– (1996)
[52] YINZHONGi J., Advances in Modelling and Analysis 19 pp 23– (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.