×

zbMATH — the first resource for mathematics

On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. I: A review. (English) Zbl 1173.76342
Summary: An unwelcome feature of the popular streamline upwind/Petrov-Galerkin (SUPG) stabilization of convection-dominated convection-diffusion equations is the presence of spurious oscillations at layers. Since the mid of the 1980s, a number of methods have been proposed to remove or, at least, to diminish these oscillations without leading to excessive smearing of the layers. The paper gives a review and state of the art of these methods, discusses their derivation, proposes some alternative choices of parameters in the methods and categorizes them. Some numerical studies which supplement this review provide a first insight into the advantages and drawbacks of the methods.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
Software:
MooNMD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akin, J.E.; Tezduyar, T.E., Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements, Comput. methods appl. mech. engrg., 193, 1909-1922, (2004) · Zbl 1067.76557
[2] Akin, J.E.; Tezduyar, T.E.; Ungor, M.; Mittal, S., Stabilization parameters and smagorinski turbulence model, J. appl. mech., 70, 2-9, (2003) · Zbl 1110.74311
[3] Almeida, R.C.; Silva, R.S., A stable petrov – galerkin method for convection-dominated problems, Comput. methods appl. mech. engrg., 140, 291-304, (1997) · Zbl 0899.76258
[4] Baba, K.; Tabata, M., On a conservative upwind finite element scheme for convective diffusion equations, RAIRO, Anal. numer., 15, 3-25, (1981) · Zbl 0466.76090
[5] Y. Bazilevs, T.J.R. Hughes, Weak imposition of Dirichlet boundary conditions in Fluid Mechanics, ICES Report 05-25, University of Texas at Austin, 2005. · Zbl 1115.76040
[6] Brezzi, F.; Franca, L.P.; Russo, A., Further considerations on residual-free bubbles for advective – diffusive equations, Comput. methods appl. mech. engrg., 166, 25-33, (1998) · Zbl 0934.65126
[7] Brezzi, F.; Marini, D.; Süli, E., Residual-free bubbles for advection – diffusion problems: the general error analysis, Numer. math., 85, 31-47, (2000) · Zbl 0963.65109
[8] Brezzi, F.; Russo, A., Choosing bubbles for advection – diffusion problems, Math. models methods appl. sci., 4, 571-587, (1994) · Zbl 0819.65128
[9] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[10] Burman, E., A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. numer. anal., 43, 2012-2033, (2005) · Zbl 1111.65102
[11] Burman, E.; Ern, A., Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection – diffusion – reaction equation, Comput. methods appl. mech. engrg., 191, 3833-3855, (2002) · Zbl 1101.76354
[12] Burman, E.; Ern, A., Stabilized Galerkin approximation of convection – diffusion – reaction equations: discrete maximum principle and convergence, Math. comput., 74, 1637-1652, (2005) · Zbl 1078.65088
[13] Burman, E.; Hansbo, P., Edge stabilization for Galerkin approximations of convection – diffusion – reaction problems, Comput. methods appl. mech. engrg., 193, 1437-1453, (2004) · Zbl 1085.76033
[14] do Carmo, E.G.D.; Alvarez, G.B., A new stabilized finite element formulation for scalar convection – diffusion problems: the streamline and approximate upwind/petrov – galerkin method, Comput. methods appl. mech. engrg., 192, 3379-3396, (2003) · Zbl 1054.76055
[15] do Carmo, E.G.D.; Alvarez, G.B., A new upwind function in stabilized finite element formulations, using linear and quadratic elements for scalar convection – diffusion problems, Comput. methods appl. mech. engrg., 193, 2383-2402, (2004) · Zbl 1067.76568
[16] do Carmo, E.G.D.; Galeão, A.C., Feedback petrov – galerkin methods for convection-dominated problems, Comput. methods appl. mech. engrg., 88, 1-16, (1991) · Zbl 0753.76093
[17] Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Zienkiewicz, O.C., Finite element methods for second order differential equations with significant first derivatives, Int. J. numer. methods engrg., 10, 1389-1396, (1976) · Zbl 0342.65065
[18] Ciarlet, P.G., Basic error estimates for elliptic problems, (), 17-351 · Zbl 0875.65086
[19] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection – diffusion equation, Comput. methods appl. mech. engrg., 110, 325-342, (1993) · Zbl 0844.76048
[20] Codina, R.; Oñate, E.; Cervera, M., The intrinsic time for the streamline upwind/petrov – galerkin formulation using quadratic elements, Comput. methods appl. mech. engrg., 94, 239-262, (1992) · Zbl 0748.76082
[21] Codina, R.; Soto, O., Finite element implementation of two-equation and algebraic stress turbulence models for steady incompressible flows, Int. J. numer. meth. fluids, 30, 309-333, (1999) · Zbl 0948.76036
[22] Dolejšı´, V., Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes, Comput. vis. sci., 1, 165-178, (1998) · Zbl 0917.68214
[23] Douglas jun, J.; Wang, J., An absolutely stabilized finite element method for the Stokes problem, Math. comput., 52, 495-508, (1989) · Zbl 0669.76051
[24] Elman, H.C.; Ramage, A., An analysis of smoothing effects of upwinding strategies for the convection – diffusion equation, SIAM J. numer. anal., 40, 254-281, (2002) · Zbl 1017.65090
[25] Eriksson, K.; Johnson, C., Adaptive streamline diffusion finite element methods for stationary convection – diffusion problems, Math. comput., 60, 167-188, (1993) · Zbl 0795.65074
[26] Franca, L.P.; Frey, S.L.; Hughes, T.J.R., Stabilized finite element methods. I.: application to the advective – diffusive model, Comput. methods appl. mech. engrg., 95, 253-276, (1992) · Zbl 0759.76040
[27] Fischer, B.; Ramage, A.; Silvester, D.J.; Wathen, A.J., On parameter choice and iterative convergence for stabilised discretisations of advection – diffusion problems, Comput. methods appl. mech. engrg., 179, 179-195, (1999) · Zbl 0977.76043
[28] Galeão, A.C.; Almeida, R.C.; Malta, S.M.C.; Loula, A.F.D., Finite element analysis of convection dominated reaction – diffusion problems, Appl. numer. math., 48, 205-222, (2004) · Zbl 1055.65125
[29] Galeão, A.C.; do Carmo, E.G.D., A consistent approximate upwind petrov – galerkin method for convection-dominated problems, Comput. methods appl. mech. engrg., 68, 83-95, (1988) · Zbl 0626.76091
[30] Guermond, J.L., A finite element technique for solving first-order pdes in Lp, SIAM J. numer. anal., 42, (2004) · Zbl 1080.65110
[31] Harari, I.; Franca, L.P.; Oliveira, S.P., Streamline design of stability parameters for advection – diffusion problems, J. comput. phys., 171, 115-131, (2001) · Zbl 0985.65146
[32] Heinrich, J.C.; Huyakorn, P.S.; Zienkiewicz, O.C.; Mitchell, A.R., An ‘upwind’ finite element scheme for two-dimensional convective transport equation, Int. J. numer. methods engrg., 11, 131-143, (1977) · Zbl 0353.65065
[33] Heinrich, J.C.; Zienkiewicz, O.C., Quadratic finite element schemes for two-dimensional convective-transport problems, Int. J. numer. methods engrg., 11, 1831-1844, (1977) · Zbl 0372.76002
[34] Hughes, T.J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[35] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics. VIII. the Galerkin/least-squares method for advective – diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[36] Hughes, T.J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. beyond SUPG, Comput. methods appl. mech. engrg., 54, 341-355, (1986) · Zbl 0622.76074
[37] Ikeda, T., Maximum principle in finite element models for convection – diffusion phenomena, Lecture notes in numerical and applied analysis, vol. 4, (1983), North-Holland Amsterdam · Zbl 0508.65049
[38] John, V.; Knobloch, P., On discontinuity-capturing methods for convection – diffusion equations, (), 336-344 · Zbl 1119.65410
[39] V. John, P. Knobloch, A computational comparison of methods diminishing spurious oscillations in finite element solutions of convection – diffusion equations, in: Proceedings of the Conference Programs and Algorithms of Numerical Mathematics, vol. 13, Prague, May 28-31, 2006 (to appear).
[40] John, V.; Matthies, G., Moonmd – a program package based on mapped finite element methods, Comput. visual. sci., 6, 163-170, (2004) · Zbl 1061.65124
[41] Johnson, C., Adaptive finite element methods for diffusion and convection problems, Comput. methods appl. mech. engrg., 82, 301-322, (1990) · Zbl 0717.76078
[42] Johnson, C., A new approach to algorithms for convection problems which are based on exact transport+projection, Comput. methods appl. mech. engrg., 100, 45-62, (1992) · Zbl 0825.76413
[43] Johnson, C.; Schatz, A.H.; Wahlbin, L.B., Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. comput., 49, 25-38, (1987) · Zbl 0629.65111
[44] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. comput., 54, 107-129, (1990) · Zbl 0685.65086
[45] Kanayama, H., Discrete models for salinity distribution in a bay: conservation law and maximum principle, Theoretical appl. mech., 28, 559-579, (1978)
[46] Knobloch, P., Improvements of the mizukami – hughes method for convection – diffusion equations, Comput. methods appl. mech. engrg., 196, 579-594, (2006) · Zbl 1120.76328
[47] Knopp, T.; Lube, G.; Rapin, G., Stabilized finite element methods with shock capturing for advection – diffusion problems, Comput. methods appl. mech. engrg., 191, 2997-3013, (2002) · Zbl 1001.76058
[48] Layton, W.; Polman, B., Oscillation absorption finite element methods for convection – diffusion problems, SIAM J. sci. comput., 17, 1328-1346, (1996) · Zbl 0860.65112
[49] Lube, G., An asymptotically fitted finite element method for convection dominated convection – diffusion – reaction problems, Z. angew. math. mech., 72, 189-200, (1992) · Zbl 0772.65072
[50] Mizukami, A., An implementation of the streamline-upwind/petrov – galerkin method for linear triangular elements, Comput. methods appl. mech. engrg., 49, 357-364, (1985) · Zbl 0546.76024
[51] Mizukami, A.; Hughes, T.J.R., A petrov – galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle, Comput. methods appl. mech. engrg., 50, 181-193, (1985) · Zbl 0553.76075
[52] U. Nävert, A finite element method for convection – diffusion problems, Ph.D. Thesis, Chalmers University of Technology Göteborg, 1982.
[53] Niijima, K., Pointwise error estimates for a streamline diffusion finite element scheme, Numer. math., 56, 707-719, (1990) · Zbl 0691.65077
[54] Oñate, E., Derivation of stabilized equations for numerical solution of advective – diffusive transport and fluid flow problems, Comput. methods appl. mech. engrg., 151, 233-265, (1998) · Zbl 0916.76060
[55] A. Ramage, A note on parameter choice and iterative convergence for stabilised discretisations of advection – diffusion problems in three dimensions, Mathematics Research Report 32/98, University of Strathclyde, July 1998.
[56] Ramage, A., A multigrid preconditioner for stabilised discretisations of advection – diffusion problems, J. comput. appl. math., 110, 187-203, (1999) · Zbl 0939.65135
[57] Rice, J.G.; Schnipke, R.J., A monotone streamline upwind finite element method for convection-dominated flows, Comput. methods appl. mech. engrg., 48, 313-327, (1985) · Zbl 0553.76073
[58] Roos, H.-G.; Stynes, M.; Tobiska, L., Numerical methods for singularly perturbed differential equations. convection – diffusion and flow problems, (1996), Springer Berlin · Zbl 0844.65075
[59] de Sampaio, P.A.B.; Coutinho, A.L.G.A., A natural derivation of discontinuity capturing operator for convection – diffusion problems, Comput. methods appl. mech. engrg., 190, 6291-6308, (2001) · Zbl 1011.76042
[60] Shih, Y.-T.; Elman, H.C., Modified streamline diffusion schemes for convection – diffusion problems, Comput. methods appl. mech. engrg., 174, 137-151, (1999) · Zbl 0957.76035
[61] Stynes, M.; Tobiska, L., Necessary L2-uniform convergence conditions for difference schemes for two-dimensional convection – diffusion problems, Comput. math. appl., 29, 45-53, (1995) · Zbl 0822.65077
[62] Tabata, M., A finite element approximation corresponding to the upwind finite differencing, Mem. numer. math., 4, 47-63, (1977) · Zbl 0358.65102
[63] Tezduyar, T.E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. methods appl. mech. engrg., 190, 411-430, (2000) · Zbl 0973.76057
[64] Tezduyar, T.E.; Park, Y.J., Discontinuity-capturing finite element formulations for nonlinear convection – diffusion – reaction equations, Comput. methods appl. mech. engrg., 59, 307-325, (1986) · Zbl 0593.76096
[65] Zhou, G., How accurate is the streamline diffusion finite element method?, Math. comput., 66, 31-44, (1997) · Zbl 0854.65094
[66] Zhou, G.; Rannacher, R., Pointwise superconvergence of the streamline diffusion finite-element method, Numer. methods partial differ. equations, 12, 123-145, (1996) · Zbl 0841.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.