×

zbMATH — the first resource for mathematics

A comparison of rotation-free triangular shell elements for unstructured meshes. (English) Zbl 1173.74420
Summary: Many engineering applications require accurate and rapidly computed thin-shell elements. Rotation-free (RF) shell elements include the bending behaviour of thin shells without introducing any additional degrees of freedom compared to a membrane element. Instead, constant curvatures are approximated from the out-of-plane displacements of a patch of usually four triangular elements. A consequence of this is that the accuracy for irregular meshes has been unsatisfactory. The aim of this study is to find an RF shell element which is accurate also for unstructured meshes. The main difference between existing elements is whether they assume two-dimensional constant curvatures over the patch or use superposition of one-dimensional constant curvatures for the three pairs of triangles. The first assumption fulfils constant curvatures for a Kirchhoff plate exactly, whereas the second and most common assumption only approximates constant curvatures. The first assumption is significantly more resistant to element shape distortions, whereas the second assumption is slightly faster to compute and more appropriate on boundaries where one or more elements are missing or several neighbouring elements share a side. The combination is significantly more accurate for irregular meshes than other comparable RF elements for linear benchmark tests.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F.G. Flores, E. Oñate, K. Schweizerhof, Session on advances in rotation-free shell elements, in: 5th International Conference on Computation of Shell & Spatial Structures, Salzburg, Austria, 1-4 June, 2005.
[2] Sabourin, F.; Brunet, M., Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis, Engrg. comput., 23, 469-502, (2006) · Zbl 1182.74207
[3] Phaal, R.; Calladine, C.R., A simple class of finite elements for plate and shell problems II: an element for thin shells with only translational degrees of freedom, Int. J. numer. methods engrg., 35, 979-996, (1992) · Zbl 0775.73286
[4] Laurent, H.; Rio, G., Formulation of a thin shell finite element with continuity C0 and convected frame notion, Comput. mech., 27, 218-232, (2001) · Zbl 1162.74468
[5] Flores, F.G.; Oñate, E., Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach, Comput. methods appl. mech. engrg., 194, 907-932, (2005) · Zbl 1112.74510
[6] Oñate, E.; Cervera, M., Derivation of thin plate bending elements with one degree of freedom per node: A simple three node triangle, Engrg. comput., 10, 543-561, (1993)
[7] Brunet, M.; Sabourin, F., A simplified triangular shell element with a necking criterion for 3-D sheet-forming analysis, J. mater. process. technol., 50, 238-251, (1995)
[8] Guo, Y.Q.; Gati, W.; Naceur, H.; Batoz, J.L., An efficient DKT rotation free shell element for springback simulation in sheet metal forming, Comput. struct., 80, 2299-2312, (2002)
[9] M.R. Barnes, Form-finding and analysis of tension space structures by dynamic relaxation, Ph.D. thesis, Department of Civil Engineering, The City University, London, 1977.
[10] A.S.L. Chan, G.A.O. Davies, A simplified finite element model for the impact of thin shells, in: P.S. Bulson (Ed.), Structures under Shock and Impact, Proc. 1st Int. Conf., Cambridge, MA, USA, 1989, pp. 365-380.
[11] Hampshire, J.K.; Topping, B.H.V.; Chan, H.C., Three node triangular bending elements with one degree of freedom per node, Engrg. comput., 9, 49-62, (1992)
[12] Phaal, R.; Calladine, C.R., A simple class of finite elements for plate and shell problems I: elements for beams and thin flat plates, Int. J. numer. methods engrg., 35, 955-977, (1992) · Zbl 0775.73285
[13] Turner, M.J.; Clough, R.W.; Martin, H.C.; Topp, L.J., Stiffness and deflection analysis of complex structures, J. aeronaut. sci., 23, 9, 805-823, (1956) · Zbl 0072.41003
[14] Brunet, M.; Sabourin, F., Analysis of a rotation-free 4-node shell element, Int. J. numer. methods engrg., 66, 1483-1510, (2006) · Zbl 1113.74419
[15] Oñate, E.; Zárate, F., Rotation-free triangular plate and shell elements, Int. J. numer. methods engrg., 47, 557-603, (2000) · Zbl 0968.74070
[16] Flores, F.G.; Oñate, E., A basic thin shell triangle with only translational DOFs for large strain plasticity, Int. J. numer. methods engrg., 51, 57-83, (2001) · Zbl 1013.74065
[17] Flores, F.G.; Oñate, E., A rotation-free shell triangle for the analysis of kinked and branching shells, Int. J. numer. methods engrg., 69, 1521-1551, (2007) · Zbl 1194.74394
[18] Oñate, E.; Flores, F.G., Advances in the formulation of the rotation-free basic shell triangle, Comput. methods appl. mech. engrg., 194, 2406-2443, (2005) · Zbl 1083.74048
[19] Sabourin, F.; Brunet, M., Analysis of plates and shells with a simplified three node triangular element, Thin-walled struct., 21, 209-223, (1995)
[20] J.M. Roelandt, J.L. Batoz, Shell finite element for deep drawing problems: computational aspects and results, in: IUTAM Symposium on Finite Inelastic Deformations, 1992, pp. 423-430.
[21] Morley, L.S.D., The constant-moment plate-bending element, J. strain anal., 6, 20-24, (1971) · Zbl 0098.16202
[22] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin shell finite-element analysis, Int. J. numer. methods engrg., 47, 2039-2072, (2000) · Zbl 0983.74063
[23] Cirak, F.; Ortiz, M., Fully C1-conforming subdivision elements for finite deformation thin-shell analysis, Int. J. numer. methods engrg., 51, 813-833, (2001) · Zbl 1039.74045
[24] Hauptmann, R.; Schweizerhof, K., A systematic development of solid-shell element formulations for linear and non-linear analysis employing only displacement degrees of freedom, Int. J. numer. methods engrg., 42, 49-69, (1998) · Zbl 0917.73067
[25] P. Jetteur, Development of a new shell element for very thin shell structures, Tech. Rep., Samtech, Liege, Belgium, Report 236, 2002.
[26] M. Gärdsback, G. Tibert, Evaluation of triangular shell elements for thin membrane structures, in: Proc. 5th International Conference on Computation of Shell & Spatial Structures, Salzburg, Austria, 1-4 June, 2005.
[27] Flores, F.G.; Oñate, E., Rotation-free element for the non-linear analysis of beams and axisymmetric shells, Comput. methods appl. mech. engrg., 195, 5297-5315, (2006) · Zbl 1120.74050
[28] MacNeal, R.H.; Harder, R.L., A proposed standard set of problems to test finite element accuracy, Finite elem. anal. des., 1, 3-22, (1985)
[29] Belytschko, T.; Stolarski, H.; Liu, W.K.; Carpenter, N.; Ong, J.S.J., Stress projection for membrane and shear locking in shell finite elements, Comput. methods appl. mech. engrg., 51, 221-258, (1985) · Zbl 0581.73091
[30] Knight, N.F., Raasch challenge for shell elements, Aiaa j., 2, 375-381, (1997) · Zbl 0894.73155
[31] Battini, J.-M., A modified corotational framework for triangular shell elements, Comput. methods appl. mech. engrg., 196, 1905-1914, (2007) · Zbl 1173.74398
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.