×

zbMATH — the first resource for mathematics

Extended finite element simulation of quasi-brittle fracture in functionally graded materials. (English) Zbl 1173.74406
Summary: The paper addresses the simulation of fracture processes in quasi-brittle functionally graded materials (FGMs), endowed with elastic and toughness properties which gradually vary in space. To avoid strong stress gradients, reference is made to FGMs with a weak gradation. An ad hoc extended finite element formulation, accounting for material gradation, is developed to follow the propagation of cohesive cracks in the graded medium. The effectiveness of the proposed methodology is checked simulating four points bending tests on notched beams, made of a glass-filled epoxy composite material, featuring a mechanical gradient parallel and perpendicular to the notch.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
74E05 Inhomogeneity in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schulz, U.; Peters, M.; Bach, Fr.-W.; Tegeder, G., Graded coatings for thermal, wear and corrosion barriers, Mater. sci. engrg. A, 362, 61-80, (2003)
[2] Erdogan, F.; Wu, B.H., Crack problem in FGM layers under thermal stresses, J. thermal stresses, 19, 237-265, (1996)
[3] Erdogan, F.; Wu, B.H., The surface crack problem for a plate with functionally graded properties, ASME J. appl. mech., 64, 449-456, (1997) · Zbl 0900.73615
[4] Bao, G.; Wang, L., Multiple cracking in functionally graded ceramic/metal coatings, Int. J. solids struct., 32, 2853-2871, (1995) · Zbl 0919.73217
[5] Han, J.-C.; Wang, B.-L., Thermal shock resistance enhancement of functionally graded materials by multiple cracking, Acta mater., 54, 963-973, (2006)
[6] Menouillard, T.; Elguedj, T.; Combescure, A., Mixed-mode stress intensity factors for graded materials, Int. J. solids struct., 43, 1946-1959, (2006) · Zbl 1121.74371
[7] Jin, Z.-H.; Paulino, G.H.; Dodds, R.H., Finite element investigation of quasistatic crack growth in functionally graded materials using a novel cohesive zone fracture model, ASME J. appl. mech., 69, 370-379, (2002) · Zbl 1110.74499
[8] Kandula, S.S.V.; Abanto-Bueno, J.; Geubelle, P.H.; Lambros, J., Cohesive modelling of dynamic fracture in functionally graded materials, Int. J. fracture, 132, 275-296, (2005) · Zbl 1196.74195
[9] Li, C.; Zou, Z.; Duan, Z., Multiple isoparametric finite element method for nonhomogeneous media, Mech. res. commun., 27, 137-142, (2000) · Zbl 0951.74593
[10] Kim, J.H.; Paulino, G.H., Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, ASME J. appl. mech., 69, 502-514, (2002) · Zbl 1110.74509
[11] Zhang, Z.; Paulino, G.H., Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials, Int. J. plasticity, 21, 1195-1254, (2005) · Zbl 1154.74391
[12] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 131-150, (1999) · Zbl 0955.74066
[13] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modeling, Int. J. numer. methods engrg., 48, 1549-1570, (2000) · Zbl 0963.74067
[14] Wells, G.N.; Sluys, L.J., A new method for modelling cohesive cracks using finite elements, Int. J. numer. methods engrg., 50, 2667-2682, (2001) · Zbl 1013.74074
[15] Mariani, S.; Perego, U., Extended finite element method for quasi-brittle fracture, Int. J. numer. methods engrg., 58, 103-126, (2003) · Zbl 1032.74673
[16] Rousseau, C.-E.; Tippur, H.V., Compositionally graded materials with cracks normal to the elastic gradient, Acta mater., 48, 4021-4033, (2000)
[17] Comi, C.; Mariani, S.; Perego, U., An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation, Int. J. numer. anal. methods geomech., 31, 213-238, (2007) · Zbl 1108.74052
[18] Rousseau, C.-E.; Tippur, H.V., Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: cracks parallel to elastic gradient, Int. J. fracture, 114, 87-111, (2002)
[19] Camacho, G.T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. solids struct., 33, 2899-2938, (1996) · Zbl 0929.74101
[20] Rousseau, C.-E.; Tippur, H.V., Influence of elastic gradient profiles on dynamically loaded functionally graded materials: cracks along the gradient, Int. J. solids struct., 38, 7839-7856, (2001) · Zbl 1006.74534
[21] Becker, T.L.; Cannon, R.M.; Ritchie, R.O., Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and functionally graded materials, Engrg. fract. mech., 69, 1521-1555, (2002)
[22] Dal Maso, G.; Toader, R., A model for the quasi-static growth of a brittle fracture: existence and approximation results, Arch. rat. mech. anal., 162, 101-135, (2002) · Zbl 1042.74002
[23] C. Comi, S. Mariani, M. Negri, U. Perego, A variational approach to cohesive-damaging crack propagation in a bar, in: 11th International Conference on Fracture, Turin, Italy, 20-25 March, 2005.
[24] Wells, G.N.; Sluys, L.J.; de Borst, R., Simulating the propagation of displacement discontinuities in a regularized strain-softening medium, Int. J. numer. methods engrg., 53, 1235-1256, (2002)
[25] Irwin, G.R., Plastic zone near a crack and fracture toughness, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.