×

zbMATH — the first resource for mathematics

Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. (English) Zbl 1173.74380
Summary: The manuscript presents a novel model reduction approach for periodic heterogeneous media, which combines the multiple scale asymptotic (MSA) expansion method with the transformation field analysis (TFA) to reduce the computational cost of a direct homogenization approach without significantly compromising on solution accuracy. The evolution of failure in micro-phases and interfaces is modeled using eigendeformation. Adaptive model improvement strategy incorporating a hierarchical sequence of computational homogenization models is employed to control the accuracy of the model. We present the model formulation and the computational details along with verification (with respect to direct homogenization) and validation (with respect to physical experiments) studies.

MSC:
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
74R99 Fracture and damage
74E05 Inhomogeneity in solid mechanics
74E30 Composite and mixture properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eshelby, J.D., The determination of the field of an ellipsoidal inclusion and related problems, Proc. R. soc. lond. A, 241, 376-396, (1957) · Zbl 0079.39606
[2] Hashin, Z., The elastic moduli of heterogeneous materials, J. appl. mech., 29, 143-150, (1962) · Zbl 0102.17401
[3] Mori, T.; Tanaka, K., Average stress in the matrix and average elastic energy of materials with misfitting inclusions, Acta metall., 21, 571-574, (1973)
[4] Hill, R., A self-consistent mechanics of composite materials, J. mech. phys. solids, 13, 357-372, (1965)
[5] Christensen, R.M.; Lo, K.H., Solution for effective shear properties in three phase sphere and cylinder models, J. mech. phys. solids, 27, 315-330, (1979) · Zbl 0419.73007
[6] Babuska, I., Homogenization and application: mathematical and computational problems, () · Zbl 0346.65064
[7] Benssousan, A.; Lions, J.L.; Papanicolaou, G., Asymptotic analysis for periodic structures, (1978), North-Holland Amsterdam
[8] Suquet, P.M., Elements of homogenization for inelastic solid mechanics, () · Zbl 0645.73012
[9] Sanchez-Palencia, E., Non-homogeneous media and vibration theory, Lecture notes in physics, vol. 127, (1980), Springer-Verlag Berlin
[10] Guedes, J.M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. methods appl. mech. engrg., 83, 143-198, (1990) · Zbl 0737.73008
[11] Terada, K.; Kikuchi, N., Nonlinear homogenization method for practical applications, (), 1-16
[12] Jardak, M.; Ghanem, R., Spectral stochastic homogenization of divergence-type PDES, Comput. methods appl. mech. engrg., 193, 6-8, 429-447, (2004) · Zbl 1044.65005
[13] Ghosh, S.; Lee, K.; Raghavan, P., A multi-level computational model for multi-scale damage analysis in composite and porous materials, Int. J. solids struct., 38, 2335-2385, (2001) · Zbl 1015.74058
[14] Zohdi, T.I.; Oden, J.T.; Rodin, G.J., Hierarchical modeling of heterogeneous bodies, Comput. methods appl. mech. engrg., 138, 273-298, (1996) · Zbl 0921.73080
[15] Geers, M.G.D.; Kouznetsova, V.; Brekelmans, W.A.M., Gradient-enhanced computational homogenization for the micro – macroscale transition, J. phys. IV, 11, 145-152, (2001)
[16] Feyel, F.; Chaboche, J.-L., Fe_2 multiscale approach for modelling the elastoviscoplastic behavior of long fiber sic/ti composite materials, Comput. methods appl. mech. engrg., 183, 309-330, (2000) · Zbl 0993.74062
[17] Giladi, E.; Keller, H.B., Space – time domain decomposition for parabolic problems, Numer. math., 93, 2, 279-313, (2002) · Zbl 1019.65076
[18] Waisman, H.; Fish, J., Space – time multilevel method for molecular dynamics simulations, Comp. methods appl. mech. engrg., 195, 6542-6559, (2006) · Zbl 1126.82001
[19] M. Gosz, B. Moran, J.D. Achenbach, Matrix cracking in transversely loaded fiber composites with compliant interphases, in: AMD-150/AD-32 (Ed.), Damage Mechanics in Composites, ASME, New York, 1992.
[20] Ghosh, S.; Moorthy, S., Elastic – plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method, Comput. methods appl. mech. engrg., 121, 1-4, 373-409, (1995) · Zbl 0853.73065
[21] Aboudi, J., A continuum theory for fiber-reinforced elastic – viscoplastic composites, J. engrg. sci., 20, 55, 605-621, (1982) · Zbl 0493.73067
[22] Dvorak, G.J., Transformation field analysis of inelastic composite materials, Proc. R. soc. lond. A, 437, 311-327, (1992) · Zbl 0748.73007
[23] Bahei-El-Din, Y.A.; Rajendran, A.M.; Zikry, M.A., A micromechanical model for damage progression in woven composite systems, Int. J. solids struct., 41, 2307-2330, (2004) · Zbl 1179.74128
[24] Moulinec, H.; Suquet, P., A fast numerical method for computing the linear and nonlinear properties of composites, C.R. acad. sci. Paris II, 318, 1417-1423, (1994) · Zbl 0799.73077
[25] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. methods appl. mech. engrg., 157, 69-94, (1998) · Zbl 0954.74079
[26] Berlyand, L.V.; Kolpakov, A.G., Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite, Arch. rational mech. anal., 159, 179-227, (2001) · Zbl 1138.74382
[27] Fish, J.; Shek, K.L.; Shephard, M.S.; Pandheeradi, M., Computational plasticity for composite structures based on mathematical homogenization: theory and practice, Comput. methods appl. mech. engrg., 148, 53-73, (1997) · Zbl 0924.73145
[28] Fish, J.; Yu, Q.; Shek, K.L., Computational damage mechanics for composite materials based on mathematical homogenization, Int. J. numer. methods engrg., 45, 1657-1679, (1999) · Zbl 0949.74057
[29] Fish, J.; Shek, K.L., Finite deformation plasticity of composite structures: computational models and adaptive strategies, Comput. methods appl. mech. engrg., 172, 145-174, (1999) · Zbl 0956.74009
[30] Chaboche, J.L.; Kruch, S.; Maire, J.F.; Pottier, T., Towards a micromechanics based inelastic and damage modeling of composites, Int. J. plasticity, 17, 411-439, (2001) · Zbl 0988.74006
[31] Michel, J.C.; Suquet, P., Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, Comput. methods appl. mech. engrg., 193, 5477-5502, (2004) · Zbl 1112.74471
[32] Dvorak, G.J.; Benveniste, Y., On transformation strains and uniform fields in multiphase elastic media, Proc. R. soc. lond. A, 437, 291-310, (1992) · Zbl 0748.73003
[33] Laws, N., On the thermostatics of composite materials, J. mech. phys. solids, 21, 9-17, (1973)
[34] Willis, J., Variational and related methods for the overall properties of composites, (), 1-78 · Zbl 0476.73053
[35] Dvorak, G.J., On uniform fields in heterogeneous media, Proc. R. soc. lond. A, 431, 89-110, (1990) · Zbl 0726.73002
[36] Raous, M.; Cangemi, L.; Cocu, M., A consistent model coupling adhesion, friction, and unilateral contact, Comput. methods appl. mech. engrg., 177, 383-399, (1999) · Zbl 0949.74008
[37] Krajcinovic, D., Damage mechanics, North holland series in applied mathematics and mechanics, vol. 41, (1996), Elsevier Amsterdam
[38] Fish, J.; Wagiman, A., Multiscale finite element method for a locally nonperiodic heterogeneous medium, Comp. mech., 12, 164-180, (1993) · Zbl 0779.73058
[39] Levin, V., Determination of the thermoelastic constants of composite materials, Mekh. tverdogo tels, trans. soviet acad. sciences (mech. of solids), 6, 137-145, (1976)
[40] Willis, J., Variational principles and bounds for the overall properties of composites, (), 185-215 · Zbl 0363.73014
[41] Bazant, Z.P., Instability, ductility, and size effect in strain-softening concrete, J. engrg. mech. div., 102, 331-344, (1976)
[42] Simo, J.C., Strain softening and dissipation: a unification of approaches, (), 440-461
[43] Pijaudier-Cabot, G.; Bazant, Z.P., Nonlocal damage theory, J. engrg. mech., 113, 1512-1533, (1987)
[44] Fish, J.; Yu, Q., Multiscale damage modelling for composite materials: theory and computational framework, Int. J. numer. methods engrg., 52, 161-191, (2001)
[45] Simo, J.C.; Ju, J.W., Strain- and stress-based continuum damage models - I: formulation, Int. J. solids struct., 23, 7, 821-840, (1987) · Zbl 0634.73106
[46] Oden, J.T.; Pires, E.B., Nonlocal and nonlinear friction laws and variational principals for contact problems in elasticity, J. appl. mech., 50, 67-76, (1983) · Zbl 0515.73121
[47] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2003), John Wiley and Sons New York
[48] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1998), Springer New York · Zbl 0934.74003
[49] Hughes, T.J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Int. J. numer. methods engrg., 15, 1862-1867, (1980) · Zbl 0463.73081
[50] J.M. Starbuck, R.G. Boeman, N. Rastogi, C.D. Warren, J.A. Carpenter, P.S. Sklad, Crash analysis of adhesively bonded structures, in: E.J. Wall, R. Sullivan, J.A. Carpenter (Eds.), FY 2004 Progress Report for Automotive Lightweighting Materials, US Department of Energy, 2004, pp. 221-227.
[51] Oden, J.T.; Vemaganti, K.S., Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials - I: error estimates and adaptive algorithms, J. comput. phys., 164, 1, 22-47, (2000) · Zbl 0992.74072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.