# zbMATH — the first resource for mathematics

Random walks on discrete cylinders and random interlacements. (English) Zbl 1172.60316
Summary: We explore some of the connections between the local picture left by the trace of simple random walk on a cylinder $${(\mathbb {Z} / N\mathbb {Z})^d \times \mathbb {Z}}, d \geq 2$$, running for times of order $$N^{2d}$$ and the model of random interlacements recently introduced in [A. Sznitman, Vacant set of random interlacements and percolation, preprint, arXiv:0704.2560, to appear in Ann. Math.]. In particular, we show that for large $$N$$ in the neighborhood of a point of the cylinder with vertical component of order $$N^{d}$$ the complement of the set of points visited by the walk up to times of order $$N^{2d}$$ is close in distribution to the law of the vacant set of random interlacements with a level which is determined by an independent Brownian local time. The limit behavior of the joint distribution of the local pictures in the neighborhood of finitely many points is also derived.

##### MSC:
 60G50 Sums of independent random variables; random walks 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
Full Text:
##### References:
 [1] Chung K.L. (1974) A Course in Probability Theory. Academic Press, San Diego · Zbl 0345.60003 [2] Csáki E., Revesz P. (1983) Strong invariance for local times. Z. für Wahrsch. verw. Geb. 62: 263–278 · Zbl 0488.60045 · doi:10.1007/BF00538801 [3] Dembo A., Sznitman A.S. (2006) On the disconnection of a discrete cylinder by a random walk. Probab. Theory Relat. Fields 136(2): 321–340 · Zbl 1105.60029 · doi:10.1007/s00440-005-0485-9 [4] Dembo, A., Sznitman, A.S.: A lower bound on the disconnection time of a discrete cylinder. Progress in probability, vol. 60. In and Out of Equilibrium 2. Birkhäuser, Basel, pp. 211–227 (2008) · Zbl 1173.82360 [5] Grigoryan A., Telcs A. (2001) Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109(3): 451–510 · Zbl 1010.35016 · doi:10.1215/S0012-7094-01-10932-0 [6] Khaśminskii R.Z. (1959) On positive solutions of the equation A u + V u = 0. Theor. Probab. Appl. 4: 309–318 · Zbl 0089.34501 · doi:10.1137/1104030 [7] Lindvall T. (1992) Lectures on the Coupling Method. Dover, New York · Zbl 0850.60019 [8] Sznitman A.S. (2008) How universal are asymptotics of disconnection times in discrete cylinders? Ann. Probab. 36(1): 1–53 · Zbl 1134.60061 · doi:10.1214/009117907000000114 [9] Sznitman, A.S.: Vacant set of random interlacements and percolation. Preprint available at: http://www.math.ethz.ch/u/sznitman/preprints · Zbl 1202.60160 [10] Sznitman, A.S.: Upper bound on the disconnection time of discrete cylinders and random interlacements. Preprint available at: http://www.math.ethz.ch/u/sznitman/preprints · Zbl 1179.60025 [11] Sidoravicius, V., Sznitman, A.S.: Percolation for the vacant set of random interlacements. Preprint available at: http://www.math.ethz.ch/u/sznitman/preprints · Zbl 1168.60036 [12] Teixeira, A.: On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab. (in press) Also available at arXiv:0805.4106 · Zbl 1158.60046 [13] Windisch D. (2008) Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13: 140–150 · Zbl 1187.60089 [14] Woess W. (2000) Random Walks on Infinite Graphs and Groups. Cambridge University Press, Cambridge · Zbl 0951.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.