×

zbMATH — the first resource for mathematics

Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. (English) Zbl 1171.76396
Summary: An axisymmetric jet at a diameter-based Reynolds number of \(1.1 \times 10^4\) is computed by a large eddy simulation (LES) in order to investigate its self-similarity region. The LES combines low-dissipation numerical schemes and explicit filtering of the flow variables to relax energy through the smaller scales discretized. The computational domain extends up to 150 jet radii in the downstream direction, which is found to be large enough to discretize a part of this region. Turbulence in the self-preserving jet is characterized by evaluating explicitly from the LES fields the second- and third-order moments of velocity, the pressure - velocity correlations as well as the budgets for the turbulent kinetic energy and for its components. Reference solutions are thus obtained. They agree well with the experimental data given by N. R. Panchapakesan and J. L. Lumley [J. Fluid Mech. 246, 197 (1963)] for a jet at the same Reynolds number. The distance required to achieve self-similarity in the LES, around 120 radii from the inflow, is particularly similar to that in the experiment. The discrepancies observed with respect to the data provided by Panchapakesan and Lumley and by J. Hussein, P. Capp and K. George [J. Fluid Mech., 258, 31 (1994)] for a jet at a higher Reynolds number, specially regarding the turbulence diffusion and the dissipation, are discussed. They appear largely resulting from the approximations made in the experiments to estimate the quantities that cannot be measured with accuracy. The role of the pressure terms in the energy redistribution is also clarified by the LES. Moreover, the turbulent energy budget is calculated in the jet from an equation derived from the filtered compressible Navier-Stokes equations, which includes the dissipation due to the explicit filtering. This has allowed us to assess the behaviour of the LES approach based on relaxation filtering (LES-RF) from the contributions of filtering and viscosity to energy dissipation. The filtering activity is particularly shown to adjust by itself to the grid and flow properties.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
Software:
CAPP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s10915-005-9029-9 · Zbl 1101.76028 · doi:10.1007/s10915-005-9029-9
[2] DOI: 10.1017/S0022112061000834 · Zbl 0098.41104 · doi:10.1017/S0022112061000834
[3] DOI: 10.1017/S0022112093000096 · doi:10.1017/S0022112093000096
[4] DOI: 10.1016/j.ijheatfluidflow.2006.02.008 · doi:10.1016/j.ijheatfluidflow.2006.02.008
[5] DOI: 10.1146/annurev.fluid.32.1.1 · doi:10.1146/annurev.fluid.32.1.1
[6] DOI: 10.1007/s00162-005-0005-7 · Zbl 1177.76154 · doi:10.1007/s00162-005-0005-7
[7] DOI: 10.2514/1.7465 · doi:10.2514/1.7465
[8] DOI: 10.1063/1.1586271 · Zbl 1186.76355 · doi:10.1063/1.1586271
[9] DOI: 10.2514/1.10665 · doi:10.2514/1.10665
[10] DOI: 10.2514/1.29825 · doi:10.2514/1.29825
[11] DOI: 10.1016/j.jcp.2003.09.003 · Zbl 1042.76044 · doi:10.1016/j.jcp.2003.09.003
[12] DOI: 10.1017/S0022112088002885 · doi:10.1017/S0022112088002885
[13] Bogey, Acta Acust. 88 pp 463– (2002)
[14] DOI: 10.1016/S0065-2156(08)70266-7 · Zbl 0472.76052 · doi:10.1016/S0065-2156(08)70266-7
[15] DOI: 10.1063/1.869626 · doi:10.1063/1.869626
[16] DOI: 10.1146/annurev.fl.28.010196.000401 · doi:10.1146/annurev.fl.28.010196.000401
[17] DOI: 10.1063/1.2747225 · Zbl 1182.76056 · doi:10.1063/1.2747225
[18] DOI: 10.1063/1.870165 · Zbl 1149.76449 · doi:10.1063/1.870165
[19] DOI: 10.1017/S002211209400323X · doi:10.1017/S002211209400323X
[20] DOI: 10.1016/j.jcp.2005.08.017 · Zbl 1146.76607 · doi:10.1016/j.jcp.2005.08.017
[21] DOI: 10.1017/S0022112076001468 · doi:10.1017/S0022112076001468
[22] DOI: 10.1115/1.1516576 · doi:10.1115/1.1516576
[23] DOI: 10.1063/1.1480830 · Zbl 1185.76143 · doi:10.1063/1.1480830
[24] Geurts, Elements of Direct and Large-Eddy Simulation (2004)
[25] DOI: 10.1017/S0022112091000368 · Zbl 0729.76594 · doi:10.1017/S0022112091000368
[26] DOI: 10.1017/S0022112069000358 · doi:10.1017/S0022112069000358
[27] DOI: 10.1006/jcph.1999.6268 · Zbl 0949.76042 · doi:10.1006/jcph.1999.6268
[28] DOI: 10.1007/s003480050168 · doi:10.1007/s003480050168
[29] DOI: 10.1063/1.870294 · Zbl 1149.76363 · doi:10.1063/1.870294
[30] DOI: 10.1017/S0022112097005429 · Zbl 0900.76369 · doi:10.1017/S0022112097005429
[31] DOI: 10.1063/1.1624610 · Zbl 1186.76146 · doi:10.1063/1.1624610
[32] DOI: 10.1007/BF00849116 · Zbl 0844.76039 · doi:10.1007/BF00849116
[33] DOI: 10.1063/1.2740709 · Zbl 1182.76781 · doi:10.1063/1.2740709
[34] DOI: 10.1088/1468-5248/3/1/024 · doi:10.1088/1468-5248/3/1/024
[35] DOI: 10.1063/1.2959171 · Zbl 1182.76199 · doi:10.1063/1.2959171
[36] DOI: 10.1006/jcph.1993.1142 · Zbl 0790.76057 · doi:10.1006/jcph.1993.1142
[37] DOI: 10.1063/1.1833413 · Zbl 1187.76122 · doi:10.1063/1.1833413
[38] DOI: 10.1063/1.1350896 · Zbl 1184.76530 · doi:10.1063/1.1350896
[39] DOI: 10.1017/S0022112063000306 · Zbl 0106.18801 · doi:10.1017/S0022112063000306
[40] DOI: 10.1017/S0022112001006644 · Zbl 1049.76558 · doi:10.1017/S0022112001006644
[41] DOI: 10.1023/A:1001179014517 · Zbl 0928.76077 · doi:10.1023/A:1001179014517
[42] DOI: 10.1007/978-1-4020-5152-2_15 · doi:10.1007/978-1-4020-5152-2_15
[43] DOI: 10.1063/1.1833414 · Zbl 1187.76076 · doi:10.1063/1.1833414
[44] DOI: 10.1016/j.ijheatfluidflow.2004.02.020 · doi:10.1016/j.ijheatfluidflow.2004.02.020
[45] DOI: 10.1017/S0022112065001222 · doi:10.1017/S0022112065001222
[46] Pope, Turbulent Flows (2000) · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[47] DOI: 10.1017/S0022112067000291 · doi:10.1017/S0022112067000291
[48] DOI: 10.1007/s00162-002-0079-4 · Zbl 1051.76064 · doi:10.1007/s00162-002-0079-4
[49] DOI: 10.1017/S0022112067000643 · doi:10.1017/S0022112067000643
[50] DOI: 10.1017/S002211200700612X · Zbl 1116.76073 · doi:10.1017/S002211200700612X
[51] Sagaut, Large-Eddy Simulation for Incompressible Flows: An Introduction (2005) · Zbl 0964.76002
[52] DOI: 10.1016/j.compfluid.2005.04.008 · Zbl 1177.76372 · doi:10.1016/j.compfluid.2005.04.008
[53] DOI: 10.1002/fld.551 · Zbl 1143.76464 · doi:10.1002/fld.551
[54] DOI: 10.1063/1.2204060 · doi:10.1063/1.2204060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.