×

zbMATH — the first resource for mathematics

Heteroclinic connections in plane Couette flow. (English) Zbl 1171.76383
Summary: Plane Couette flow transitions to turbulence at \(Re \approx 325\) even though the laminar solution with a linear profile is linearly stable for all \(Re\) (Reynolds number). One starting point for understanding this subcritical transition is the existence of invariant sets in the state space of the Navier-Stokes equation, such as upper and lower branch equilibria and periodic and relative periodic solutions, that are distinct from the laminar solution. This article reports several heteroclinic connections between such objects and briefly describes a numerical method for locating heteroclinic connections. We show that the nature of streaks and streamwise rolls can change significantly along a heteroclinic connection.

MSC:
76F06 Transition to turbulence
76E05 Parallel shear flows in hydrodynamic stability
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Software:
channelflow
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, Dynamics: The Geometry of Behavior. (1992)
[2] DOI: 10.1017/S0022112005005811 · Zbl 1082.76041 · doi:10.1017/S0022112005005811
[3] DOI: 10.1103/PhysRevLett.79.5250 · doi:10.1103/PhysRevLett.79.5250
[4] Palmer, Shadowing in Dynamical Systems. (2000) · Zbl 0997.37001 · doi:10.1007/978-1-4757-3210-8
[5] Narasimha, Whither Turbulence? Turbulence at the Cross-Road pp 13– (1989)
[6] DOI: 10.1103/PhysRevE.55.2023 · doi:10.1103/PhysRevE.55.2023
[7] DOI: 10.1017/S0022112090000829 · doi:10.1017/S0022112090000829
[8] DOI: 10.1063/1.1483300 · Zbl 1185.76261 · doi:10.1063/1.1483300
[9] Kuznetsov, Elements of Applied Bifurcation Theory (1998)
[10] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[11] DOI: 10.1017/S0022112007005459 · Zbl 1175.76074 · doi:10.1017/S0022112007005459
[12] DOI: 10.1017/S0022112003003768 · Zbl 1034.76014 · doi:10.1017/S0022112003003768
[13] DOI: 10.1209/0295-5075/32/6/004 · doi:10.1209/0295-5075/32/6/004
[14] DOI: 10.1017/S0022112094004234 · Zbl 0813.76024 · doi:10.1017/S0022112094004234
[15] Widder, Advanced Calculus (1961)
[16] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[17] DOI: 10.1103/PhysRevLett.81.4140 · doi:10.1103/PhysRevLett.81.4140
[18] DOI: 10.1090/S0002-9904-1967-11798-1 · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[19] DOI: 10.1103/PhysRevE.63.046307 · doi:10.1103/PhysRevE.63.046307
[20] DOI: 10.1017/S0022112071002490 · doi:10.1017/S0022112071002490
[21] DOI: 10.1137/0150045 · Zbl 0722.35011 · doi:10.1137/0150045
[22] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022 · doi:10.1017/S0022112007006301
[23] DOI: 10.1088/0951-7715/18/6/R01 · Zbl 1084.76033 · doi:10.1088/0951-7715/18/6/R01
[24] DOI: 10.1017/S0022112001006243 · Zbl 0996.76034 · doi:10.1017/S0022112001006243
[25] Jackson, Perspectives in Nonlinear Dynamics. (1989) · Zbl 0701.70001 · doi:10.1017/CBO9780511623974
[26] DOI: 10.1017/S0022112008003248 · Zbl 1151.76495 · doi:10.1017/S0022112008003248
[27] Hopf, Comm. Appl. Math. 1 pp 303– (1948) · Zbl 0031.32901 · doi:10.1002/cpa.3160010401
[28] DOI: 10.1063/1.868631 · doi:10.1063/1.868631
[29] DOI: 10.1017/S0022112097005818 · Zbl 0898.76028 · doi:10.1017/S0022112097005818
[30] DOI: 10.1088/0951-7715/10/1/004 · Zbl 0907.58042 · doi:10.1088/0951-7715/10/1/004
[31] DOI: 10.1017/S002211200800267X · Zbl 1151.76453 · doi:10.1017/S002211200800267X
[32] DOI: 10.1209/epl/i1998-00336-3 · doi:10.1209/epl/i1998-00336-3
[33] DOI: 10.1103/PhysRevLett.94.074501 · doi:10.1103/PhysRevLett.94.074501
[34] DOI: 10.1103/PhysRevE.75.066313 · doi:10.1103/PhysRevE.75.066313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.