×

zbMATH — the first resource for mathematics

On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. (English) Zbl 1171.76365
Summary: Studies of vortical interactions in boundary layers have often invoked the continuous spectrum of the Orr-Sommerfeld (O-S) equation. These vortical eigenmodes provide a link between free-stream disturbances and the boundary-layer shear - a link which is absent in the inviscid limit due to shear sheltering. In the presence of viscosity, however, a shift in the dominant balance in the operator determines the structure of these eigenfunctions inside the mean shear. In order to explain the mechanics of shear sheltering and the structure of the continuous modes, both numerical and asymptotic solutions of the linear perturbation equation are presented in single- and two-fluid boundary layers. The asymptotic analysis identifies three limits: a convective shear-sheltering regime, a convective-diffusive regime and a diffusive regime. In the shear-dominated limit, the vorticity eigenfunction possesses a three-layer structure, the topmost being a region of exponential decay. The role of viscosity is most pronounced in the diffusive regime, where the boundary layer becomes ‘transparent’ to the oscillatory eigenfunctions. Finally, the convective-diffusive regime demonstrates the interplay between the the accumulative effect of the shear and the role of viscosity. The analyses are complemented by a physical interpretation of shear-sheltering mechanism. The influence of a wallfilm, in particular viscosity and density stratification, and surface tension are also evaluated. It is shown that a modified wavenumber emerges across the interface and influences the penetration of vortical disturbances into the two-fluid shear flow.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112095000309 · Zbl 0835.76025 · doi:10.1017/S0022112095000309
[2] DOI: 10.1017/S0022112071002842 · Zbl 0237.76027 · doi:10.1017/S0022112071002842
[3] Morkovin, Viscous Drag Reduction (1969)
[4] DOI: 10.1063/1.1361092 · Zbl 1184.76352 · doi:10.1063/1.1361092
[5] DOI: 10.1017/S002211207600147X · Zbl 0339.76030 · doi:10.1017/S002211207600147X
[6] DOI: 10.1017/S0022112087001496 · Zbl 0635.76033 · doi:10.1017/S0022112087001496
[7] DOI: 10.1063/1.1693363 · doi:10.1063/1.1693363
[8] DOI: 10.1017/S0022112083000580 · Zbl 0557.76044 · doi:10.1017/S0022112083000580
[9] DOI: 10.1017/S0022112000002469 · Zbl 0983.76027 · doi:10.1017/S0022112000002469
[10] DOI: 10.1017/S0022112007008336 · Zbl 1125.76305 · doi:10.1017/S0022112007008336
[11] DOI: 10.1063/1.869716 · Zbl 1185.76578 · doi:10.1063/1.869716
[12] DOI: 10.1017/S0022112078002918 · Zbl 0383.76031 · doi:10.1017/S0022112078002918
[13] DOI: 10.1016/S0169-5983(99)00009-X · doi:10.1016/S0169-5983(99)00009-X
[14] DOI: 10.1017/S0022112091002513 · Zbl 0719.76012 · doi:10.1017/S0022112091002513
[15] Hunt, Fluid Dyn. Res. 9 pp 121– (1977)
[16] DOI: 10.1017/S002211200000851X · Zbl 0964.76026 · doi:10.1017/S002211200000851X
[17] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[18] DOI: 10.1146/annurev.fluid.30.1.507 · Zbl 1398.86006 · doi:10.1146/annurev.fluid.30.1.507
[19] DOI: 10.1017/S0022112006001340 · Zbl 1177.76136 · doi:10.1017/S0022112006001340
[20] DOI: 10.1017/S0022112005003800 · Zbl 1070.76024 · doi:10.1017/S0022112005003800
[21] DOI: 10.1017/S0022112067000357 · Zbl 0144.47102 · doi:10.1017/S0022112067000357
[22] DOI: 10.1017/S0022112005003307 · Zbl 1163.76424 · doi:10.1017/S0022112005003307
[23] DOI: 10.1063/1.1597453 · Zbl 1186.76540 · doi:10.1063/1.1597453
[24] Tollmien, Nachr. Ges. Wiss. Göttingen 1 pp 21– (1929)
[25] Schlichting, Boundary-Layer Theory (1987)
[26] DOI: 10.1002/zamm.19330130302 · JFM 59.0767.04 · doi:10.1002/zamm.19330130302
[27] DOI: 10.1017/S0022112081002991 · Zbl 0467.76051 · doi:10.1017/S0022112081002991
[28] Nakamura, Meteorol. Appl. 3 pp 157– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.