zbMATH — the first resource for mathematics

Dynamics of steps along a martensitic phase boundary. I: Semi-analytical solution. (English) Zbl 1171.74401
Summary: We study the motion of steps along a martensitic phase boundary in a cubic lattice. To enable analytical calculations, we assume antiplane shear deformation and consider a phase-transforming material with a stress-strain law that is piecewise linear with respect to one component of shear strain and linear with respect to another. Under these assumptions we derive a semi-analytical solution describing a steady sequential motion of the steps under an external loading. Our analysis yields kinetic relations between the driving force, the velocity of the steps and other characteristic parameters of the motion. These are studied in detail for one, two and three-step configurations. We show that the kinetic relations are significantly affected by the material anisotropy. Our results indicate the existence of multiple solutions exhibiting sequential step motion.

74N05 Crystals in solids
Full Text: DOI
[1] Abeyaratne, R.; Vedantam, S., A lattice-based model of the kinetics of twin boundary motion, J. mech. phys. solids, 51, 1675-1700, (2003) · Zbl 1048.74031
[2] Atkinson, W.; Cabrera, N., Motion of a frenkel – kontorova dislocation in a one-dimensional crystal, Phys. rev. A, 138, 3, 763-766, (1965)
[3] Balk, A.M.; Cherkaev, A.V.; Slepyan, L.I., Dynamics of chains with non-monotone stress – strain relations-I. model and numerical experiments, J. mech. phys. solids, 49, 131-148, (2001) · Zbl 1005.74046
[4] Balk, A.M.; Cherkaev, A.V.; Slepyan, L.I., Dynamics of chains with non-monotone stress-strain relations-II. nonlinear waves and waves of phase transition, J. mech. phys. solids, 49, 149-171, (2001) · Zbl 1005.74047
[5] Bhattacharya, K., Microstructure of martensite—why it forms and how it gives rise to the shape-memory effect, (2003), Oxford University Press Oxford · Zbl 1109.74002
[6] Bleistein, N.; Handelsman, R., Asymptotic expansions of integrals, (1975), Holt, Rinehart & Winston New York · Zbl 0327.41027
[7] Bray, D.; Howe, J., High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in co-31.8 wt pct ni alloy: part I. plate interfaces and growth ledges, Metall. mater. trans. A, 27A, 3362-3370, (1996)
[8] Cahn, J.W.; Mallet-Paret, J.; Van Vleck, E.S., Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice, SIAM J. appl. math., 59, 2, 455-493, (1998) · Zbl 0917.34052
[9] Capobianco, M.; Criscuolo, G., On quadrature for Cauchy principal value integrals of oscillatory functions, J. comput. appl. math., 156, 471-486, (2003) · Zbl 1043.65048
[10] Carpio, A.; Bonilla, L.L., Depinning transitions in discrete reaction – diffusion equations, SIAM J. appl. math., 63, 3, 1056-1082, (2003) · Zbl 1035.34058
[11] Carpio, A.; Bonilla, L.L., Oscillatory wave fronts in chains of coupled nonlinear oscillators, Phys. rev. E, 67, 5, 056621, (2003)
[12] Carpio, A.; Bonilla, L.L., Discrete models of dislocations and their motion in cubic crystals, Phys. rev. B, 71, 13, 134105, (2005)
[13] Celli, V.; Flytzanis, N., Motion of a screw dislocation in a crystal, J. appl. phys., 41, 11, 4443-4447, (1970)
[14] Celli, V.; Flytzanis, N.; Crowley, S., Analysis of the displacement field of a moving dislocation in a crystal, J. phys. chem. solids, 37, 1125-1133, (1976)
[15] Chow, S.-N., Lattice dynamical systems, (), 1-102 · Zbl 1046.37051
[16] Christian, J., Crystallographic theories interface structures and transformation mechanisms, Metall. mater. trans. A, 25A, 1821-1839, (1994)
[17] Earmme, Y.; Weiner, J., Can dislocations be accelerated through the sonic barrier, Phys. rev. lett., 31, 17, 1055-1057, (1973)
[18] Earmme, Y.; Weiner, J., Breakdown phenomena in high-speed dislocations, J. appl. phys., 45, 2, 603-609, (1974)
[19] Filon, L., 1928-1929. On a quadrature formula for trigonometric integrals. Proc. R. Soc. Edinburgh 49, 38-47. · JFM 55.0946.02
[20] Flinn, E., A modification of Filon’s method of numerical integration, J. ACM, 7, 2, 181-184, (1960) · Zbl 0121.11703
[21] Flytzanis, N.; Celli, V.; Nobile, A., Motion of two screw dislocations in a lattice, J. appl. phys., 45, 12, 5176-5181, (1974)
[22] Gumbsch, P.; Gao, H., Dislocations faster than the speed of sound, Science, 283, 12, 965-968, (1999)
[23] Healey, T.J.; Miller, U., Two-phase equilibria in the anti-plane shear of an elastic solid with interfacial effects via global bifurcation, Proc. R. soc. A, 463, 1117-1134, (2007) · Zbl 1132.74033
[24] Hirth, J., Ledges and dislocations in phase transformations, Metall. mater. trans. A, 25A, 1885-1894, (1994)
[25] Hirth, J.P.; Lothe, J., Theory of dislocations, (1982), Wiley New York
[26] Iserles, A.; Nørsett, S., Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. soc. A, 461, 1383-1399, (2005) · Zbl 1145.65309
[27] Ishioka, S., Uniform motion of a screw dislocation in a lattice, J. phys. soc. jpn., 30, 2, 323-327, (1971)
[28] Ishioka, S., Stress field around a high speed screw dislocation, J. phys. chem. solids, 36, 427-430, (1975)
[29] Koizumi, H.; Kirchner, H.; Suzuki, T., Lattice waves emission from a moving dislocation, Phys. rev. B, 65, 214104, (2002)
[30] Kresse, O.; Truskinovsky, L., Mobility of lattice defects: discrete and continuum approaches, J. mech. phys. solids, 51, 1305-1332, (2003) · Zbl 1077.74512
[31] Kresse, O.; Truskinovsky, L., Lattice friction for crystalline defects: from dislocations to cracks, J. mech. phys. solids, 52, 2521-2543, (2004) · Zbl 1084.74005
[32] Marder, M.; Gross, S., Origin of crack tip instabilities, J. mech. phys. solids, 43, 1-48, (1995) · Zbl 0878.73053
[33] Olson, G.; Cohen, M., Interphase-boundary dislocations and the concept of coherency, Acta metall., 27, 1907-1918, (1979)
[34] Papoulis, A., The Fourier integral and its applications, (1962), McGraw-Hill New York · Zbl 0108.11101
[35] Purohit, P.K., 2002. Dynamics of phase transitions in strings, beams and atomic chains. Ph.D. Thesis, California Institute of Technology, Pasadena, California.
[36] Rosakis, P., Supersonic dislocation kinetics from an augmented Peierls model, Phys. rev. lett., 86, 1, 95-98, (2001)
[37] Sharma, B., Vainchtein, A., 2007. Quasistatic propagation of steps along a phase boundary. Continuum Mech. Thermodyn. Submitted for publication. · Zbl 1160.74397
[38] Slepyan, L.I., Dynamics of a crack in a lattice, Sov. phys. dokl., 26, 5, 538-540, (1981) · Zbl 0497.73107
[39] Slepyan, L.I., The relation between the solutions of mixed dynamical problems for a continuous elastic medium and a lattice, Sov. phys. dokl., 27, 9, 771-772, (1982) · Zbl 0541.73115
[40] Slepyan, L.I., Feeding and dissipative waves in fracture and phase transition ii. phase-transition waves, J. mech. phys. solids, 49, 513-550, (2001) · Zbl 1003.74007
[41] Slepyan, L.I., Models and phenomena in fracture mechanics, (2002), Springer New York · Zbl 1047.74001
[42] Slepyan, L.I.; Ayzenberg-Stepanenko, M.V., Localized transition waves in bistable-bond lattices, J. mech. phys. solids, 52, 1447-1479, (2004) · Zbl 1159.74390
[43] Slepyan, L.I.; Troyankina, L.V., Fracture wave in a chain structure, J. appl. mech. tech. phys., 25, 6, 921-927, (1984)
[44] Slepyan, L.I.; Cherkaev, A.; Cherkaev, E., Transition waves in bistable structures. II. analytical solution: wave speed and energy dissipation, J. mech. phys. solids, 53, 407-436, (2005) · Zbl 1146.74336
[45] Swart, P.J.; Holmes, P.J., Energy minimization and the formation of microstructure in dynamic anti-plane shear, Arch. ration mech. anal., 121, 37-85, (1992) · Zbl 0786.73066
[46] Truskinovsky, L.; Vainchtein, A., Explicit kinetic relation from “first principles”, (), 43-50 · Zbl 1192.74287
[47] Truskinovsky, L.; Vainchtein, A., Kinetics of martensitic phase transitions: lattice model, SIAM J. appl. math., 66, 2, 533-553, (2005) · Zbl 1136.74362
[48] Truskinovsky, L.; Vainchtein, A., Quasicontinuum models of dynamic phase transitions, Continuum mech. thermodyn., 18, 1-21, (2006) · Zbl 1101.74049
[49] Tsai, H.; Rosakis, P., Quasi-steady growth of twins under stress, J. mech. phys. solids, 49, 289-312, (2001) · Zbl 1102.74325
[50] Zhen, Y., Vainchtein, A., 2007. Dynamics of steps along a martensitic phase boundary II: Numerical simulations. J. Mech. Phys. Solids, in press, doi:10.1016/j.jmps.2007.05.018. · Zbl 1171.74402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.