×

zbMATH — the first resource for mathematics

Classification of Levi degenerate homogeneous CR-manifolds in dimension 5. (English) Zbl 1171.32023
We recall that, given a submanifold \(F \subset \mathbb R^n\), the tube manifold over \(F\) is the submanifold \(F + i \mathbb R^n = \{\;z = x + i y\;,\;x \in F\;\} \subset \mathbb C^n\).
In the first part of this paper, the authors consider the CR geometry of a tube domain \(M = F + i \mathbb R^n \subset \mathbb C^n\) showing how several properties, like \(k\)-nondegeneracy, local CR homogeneity or CR equivalences with other tube domains, correspond to precise properties of the second fundamental form of \(F \subset \mathbb R^n\). Secondly, they introduce a recipe for constructing 2-dimensional cones \(F\) in \( \mathbb R^n\), whose associated tubes are \((n+2)\)-dimensional homogeneous CR manifolds of CR dimension 2 and 2-nondegenerate. For such manifolds, they describe the full automorphism groups and give a simple criterion to determine when two of them are CR equivalent. Finally, they restrict to the case \(n = 3\) and determine a complete list of all mutually inequivalent, homogeneous, 2-nondegenerate, CR hypersurfaces in \(\mathbb C^3\) that can be constructed with this recipe.
In the second part, they prove that any 5-dimensional, locally homogeneous, 2-nondegenerate CR manifold is locally CR equivalent to one of the tube manifolds \(F + i \mathbb R^3 \subset \mathbb C^3\) of the list in the first part. This is obtained through the classification of the Lie CR-algebras \((\mathfrak g, \mathfrak q)\) which correspond to some locally homogeneous 5-dimensional CR manifold of hypersurface type and 2-nondegenerate, and which have the minimal dimension amongst the Lie CR-algebras associated with the same manifold. The classification is quite long and consists of several lemmata. Roughly speaking, one may say that it is divided in two main steps. At first, they prove that if \((\mathfrak g, \mathfrak q)\), satisfies the hypothesis and \(\mathfrak g\) is non-solvable, then it is associated to a CR manifold that is locally equivalent to the tube over the so-called “light cone”. Secondly, they prove that if \((\mathfrak g, \mathfrak q)\) satisfies the hypotheses and \(\mathfrak g\) is solvable, then it is associated to a CR manifold which is locally CR equivalent to some of the other tube manifolds of the list.
From this result and Cartan’s classification of 3-dimensional Levi non-degenerate homogeneous CR manifolds, the classification of 5-dimensional locally homogeneous CR manifolds with degenerate Levi form is reached.

MSC:
32V40 Real submanifolds in complex manifolds
53C30 Differential geometry of homogeneous manifolds
22F30 Homogeneous spaces
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Andreotti, A. & Fredricks, G. A., Embeddability of real analytic Cauchy–Riemann manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 6 (1979), 285–304. · Zbl 0449.32008
[2] Andreotti, A. & Hill, C. D., Complex characteristic coordinates and tangential Cauchy–Riemann equations. Ann. Scuola Norm. Sup. Pisa, 26 (1972), 299–324. · Zbl 0256.32006
[3] Baouendi, M. S., Ebenfelt, P. & Rothschild, L. P., Real Submanifolds in Complex Space and their Mappings. Princeton Mathematical Series, 47. Princeton University Press, Princeton, NJ, 1999. · Zbl 0944.32040
[4] Baouendi, M. S., Huang, X. & Rothschild, L. P., Regularity of CR mappings between algebraic hypersurfaces. Invent. Math., 125 (1996), 13–36. · Zbl 0855.32009 · doi:10.1007/s002220050067
[5] Beloshapka, V. K., Symmetries of real hypersurfaces of a three-dimensional complex space. Mat. Zametki, 78 (2005), 171–179 (Russian); English translation in Math. Notes, 78 (2005), 156–163. · Zbl 1082.32025
[6] Boggess, A., CR Manifolds and the Tangential Cauchy–Riemann Complex. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991. · Zbl 0760.32001
[7] Bourbaki, N., Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1–9. Hermann, Paris, 1960. · Zbl 0199.35203
[8] Cartan, É., Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. Ann. Mat. Pura Appl., 11 (1933), 17–90. · Zbl 0005.37304 · doi:10.1007/BF02417822
[9] Chern, S. S. & Moser, J. K., Real hypersurfaces in complex manifolds. Acta Math., 133 (1974), 219–271. · Zbl 0302.32015 · doi:10.1007/BF02392146
[10] Dadok, J. & Yang, P., Automorphisms of tube domains and spherical hypersurfaces. Amer. J. Math., 107 (1985), 999–1013. · Zbl 0586.32035 · doi:10.2307/2374364
[11] Doubrov, B., Komrakov, B. & Rabinovich, M., Homogeneous surfaces in the three-dimensional affine geometry, in Geometry and Topology of Submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), pp. 168–178. World Sci. Publ., River Edge, NJ, 1996. · Zbl 0934.53007
[12] Eastwood, M. & Ezhov, V., On affine normal forms and a classification of homogeneous surfaces in affine three-space. Geom. Dedicata, 77 (1999), 11–69. · Zbl 0999.53008 · doi:10.1023/A:1005083518793
[13] Ebenfelt, P., Normal forms and biholomorphic equivalence of real hypersurfaces in C 3. Indiana Univ. Math. J., 47 (1998), 311–366. · Zbl 0941.32033 · doi:10.1512/iumj.1998.47.1531
[14] – Uniformly Levi degenerate CR manifolds: the 5-dimensional case. Duke Math. J., 110 (2001), 37–80. Correction in Duke Math. J., 131 (2006), 589–591. · Zbl 1020.32029 · doi:10.1215/S0012-7094-01-11012-0
[15] Fels, G., Locally homogeneous finitely nondegenerate CR-manifolds. Math. Res. Lett., 14 (2007), 893–922. · Zbl 1155.32027
[16] Fels, G. & Kaup, W., CR-manifolds of dimension 5: a Lie algebra approach. J. Reine Angew. Math., 604 (2007), 47–71. · Zbl 1128.32023 · doi:10.1515/CRELLE.2007.019
[17] Gaussier, H. & Merker, J., A new example of a uniformly Levi degenerate hypersurface in C 3. Ark. Mat., 41 (2003), 85–94. Correction in Ark. Mat., 45 (2007), 269–271. · Zbl 1039.32045 · doi:10.1007/BF02384568
[18] Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer, New York, 1977.
[19] Hörmander, L., An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library, 7. North-Holland, Amsterdam, 1990.
[20] Isaev, A. V. & Mishchenko, M. A., Classification of spherical tube hypersurfaces that have one minus in the Levi signature form. Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988), 1123–1153, 1327 (Russian); English translation in Math. USSR–Izv., 33 (1989), 441–472.
[21] Kaup, W., Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math., 3 (1967), 43–70. · Zbl 0157.13401 · doi:10.1007/BF01425490
[22] – On Levi-degenerate homogeneous CR-manifolds, in Contemporary Geometry and Topology and Related Topics (8th International Workshop on Differential Geometry and its Applications, Cluj-Napoca, 2007), pp. 187–199. Cluj University Press, 2008.
[23] Kaup, W. & Zaitsev, D., On local CR-transformation of Levi-degenerate group orbits in compact Hermitian symmetric spaces. J. Eur. Math. Soc. (JEMS), 8 (2006), 465–490. · Zbl 1118.32019 · doi:10.4171/JEMS/63
[24] Knapp, A. W., Lie Groups beyond an Introduction. Progress in Mathematics, 140. Birkhäuser, Boston, MA, 2002. · Zbl 1075.22501
[25] Loboda, A. V., Homogeneous real hypersurfaces in \( \mathbb{C}^{3} \) with two-dimensional isotropy groups. Tr. Mat. Inst. Steklova, 235 (2001), 114–142 (Russian); English translation in Proc. Steklov Inst. Math., 235 (2001), 107–135. · Zbl 1023.32025
[26] – Homogeneous nondegenerate surfaces in \( \mathbb{C}^{3} \) with two-dimensional isotropy groups. Funktsional. Anal. i Prilozhen., 36 (2002), 80–83 (Russian); English translation in Funct. Anal. Appl., 36 (2002), 151–153.
[27] – On the determination of a homogeneous strictly pseudoconvex hypersurface from the coefficients of its normal equation. Mat. Zametki, 73 (2003), 453–456 (Russian); English translation in Math. Notes, 73 (2003), 419–423.
[28] Medori, C. & Nacinovich, M., Algebras of infinitesimal CR automorphisms. J. Algebra, 287 (2005), 234–274. · Zbl 1132.32013 · doi:10.1016/j.jalgebra.2005.01.030
[29] Palais, R. S., A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc., 22 (1957). · Zbl 0178.26502
[30] Sakai, T., Riemannian Geometry. Shokabo, Tokyo, 1992 (Japanese); English translation in Transl. Math. Monogr., 149. Amer. Math. Soc., Providence, RI, 1996.
[31] Sergeev, A. G. & Vladimirov, V. S., Complex analysis in the future tube, in Current Problems in Mathematics, Fundamental Directions, 8, pp. 191–266, 274. Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985 (Russian); English translation in Several Complex Variable II, Encyclopaedia Math. Sci., 8, pp. 179–253, Springer, Berlin–Heidelberg, 1994. · Zbl 0614.32001
[32] Tanaka, N., On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables. J. Math. Soc. Japan, 14 (1962), 397–429. · Zbl 0113.06303 · doi:10.2969/jmsj/01440397
[33] Zaitsev, D., On different notions of homogeneity for CR-manifolds. Asian J. Math., 11 (2007), 331–340. · Zbl 1138.32018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.