×

Why screening effects do not influence the Casimir force. (English) Zbl 1170.81410

Summary: The Lifshitz theory of dispersion forces leads to thermodynamic and experimental inconsistencies when the role of drifting charge carriers is included in the model of the dielectric response. Recently modified reflection coefficients were suggested that take into account screening effects and diffusion currents. We demonstrate that this theoretical approach leads to a violation of the third law of thermodynamics (Nernst’s heat theorem) for a wide class of materials and is excluded by the data from two recent experiments. The physical reason for its failure is explained by the violation of thermal equilibrium, which is the fundamental applicability condition of the Lifshitz theory, in the presence of drift and diffusion currents.

MSC:

81T05 Axiomatic quantum field theory; operator algebras
81T99 Quantum field theory; related classical field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Casimir H. B. G., Proc. K. Ned. Akad. Wet. 51 pp 793–
[2] Lifshitz E. M., Sov. Phys. JETP 2 pp 73–
[3] DOI: 10.1016/S0370-1573(01)00015-1 · Zbl 0972.81212
[4] DOI: 10.1103/PhysRevA.69.022119
[5] DOI: 10.1103/PhysRevD.72.085009
[6] DOI: 10.1016/j.aop.2005.03.007 · Zbl 1126.81312
[7] DOI: 10.1103/PhysRevD.75.077101
[8] DOI: 10.1140/epjc/s10052-007-0346-z
[9] DOI: 10.1088/1751-8113/41/31/312002 · Zbl 1149.81379
[10] DOI: 10.1088/1751-8113/40/34/F03 · Zbl 1120.81076
[11] DOI: 10.1088/1751-8113/40/44/025 · Zbl 1129.81090
[12] DOI: 10.1088/1751-8113/41/16/164014 · Zbl 1137.81396
[13] DOI: 10.1088/1751-8113/41/16/164032 · Zbl 1153.82029
[14] DOI: 10.1103/PhysRevLett.101.163202
[15] DOI: 10.1103/PhysRevLett.101.163203
[16] DOI: 10.1103/PhysRevLett.101.163603
[17] DOI: 10.1017/CBO9780511614606
[18] Ashcroft N. W., Solid State Physics (1976)
[19] DOI: 10.1103/PhysRevE.71.056101
[20] DOI: 10.1103/PhysRevE.75.051127
[21] DOI: 10.1103/PhysRevE.73.028101
[22] DOI: 10.1103/PhysRevE.77.023101
[23] DOI: 10.1103/PhysRevD.68.116003
[24] DOI: 10.1142/S0217751X06034227 · Zbl 1113.81125
[25] DOI: 10.1016/j.aop.2007.04.005 · Zbl 1139.81059
[26] DOI: 10.1364/OE.15.004823
[27] DOI: 10.1103/PhysRevB.76.035338
[28] DOI: 10.1088/1751-8113/41/43/432001 · Zbl 1151.81409
[29] DOI: 10.1134/S1063783408020029
[30] Kondepugi D., Modern Thermodynamics (1998)
[31] DOI: 10.1007/978-1-4612-1762-6
[32] Førland K. S., Irreversible Thermodynamics (1988)
[33] DOI: 10.1088/1751-8113/41/16/164018 · Zbl 1137.81389
[34] DOI: 10.1103/PhysRevB.75.036101
[35] DOI: 10.1103/PhysRev.172.607
[36] DOI: 10.1103/PhysRevB.12.3104
[37] DOI: 10.1016/S0022-3093(05)80378-3
[38] Mott N. F., Metal-Insulator Transitions (1990)
[39] Nagels P., Amorphous Semiconductors (1979)
[40] Decca R. S., Int. J. Mod. Phys. A 25
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.