zbMATH — the first resource for mathematics

Symmetry breaking bifurcations of a parametrically excited pendulum. (English) Zbl 1170.70359
Summary: This paper examines the bifurcation behavior of a planar pendulum subjected to high-frequency parametric excitation along a tilted angle. Parametric nonlinear identification is performed on the experimental system via an optimization approach that utilizes a developed approximate analytical solution. Experimental and theoretical efforts then consider the influence of a subtle tilt angle in the applied parametric excitation by contrasting the predicted and observed mean angle bifurcations with the bifurcations due to excitation applied in either the vertical or horizontal direction. Results show that small deviations from either a perfectly vertical or horizontal excitation will result in symmetry breaking bifurcations as opposed to pitchfork bifurcations.

70K50 Bifurcations and instability for nonlinear problems in mechanics
70K40 Forced motions for nonlinear problems in mechanics
Full Text: DOI
[1] Acheson, D.J.: A pendulum theorem. Proc. Royal Soc. Lond. A 443, 239–245 (1993) · Zbl 0784.70019 · doi:10.1098/rspa.1993.0142
[2] Bartuccelli, M.V., Gentile, G., Georgiou, K.V.: On the dynamics of a vertically driven damped planar pendulum. Proc. Royal Soc. Lond. A 457, 3007–3022 (2001) · Zbl 1001.70023 · doi:10.1098/rspa.2001.0841
[3] Thomsen, J.J.: Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening. J. Sound Vib. 253(4), 807–831 (2002) · doi:10.1006/jsvi.2001.4036
[4] Butcher, E.A., Sinha, S.C.: Symbolic computation of secondary bifurcations in a parametrically excited simple pendulum. Int. J. Bifurcation Chaos 8(3), 627–637(1998) · Zbl 0963.70504 · doi:10.1142/S0218127498000425
[5] Scmitt, J.M., Bayly, P.V.: Bifurcations in the mean angle of a horizontally shaken pendulum: Analysis and experiment. Nonlinear Dyn. 15, 1–14 (1999) · Zbl 0908.70018 · doi:10.1023/A:1008279910762
[6] Clifford, M.J., Bishop, S.R.: Inverted oscillations of a driven pendulum. Proc. Royal Soc. Lond. A 454, 2811–2817 (1997) · Zbl 0915.70014 · doi:10.1098/rspa.1998.0282
[7] Balachandran, B., Nayfeh, A.H.: Applied Nonlinear Dynamics. Wiley, New York (1995) · Zbl 0848.34001
[8] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)
[9] Coleman, T., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996) · Zbl 0855.65063 · doi:10.1137/0806023
[10] Virgin, L.N.: Introduction to Experimental Nonlinear Dynamics. Cambridge University Press, Cambridge, UK (2000) · Zbl 0966.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.