×

Large deviations in total variation of occupation measures of one-dimensional diffusions. (English) Zbl 1170.60310

Summary: For one-dimensional diffusion processes, we find an explicit necessary and sufficient condition for the large deviation principle of the occupation measures in the total variation and of local times in \(L^{1}\).

MSC:

60F10 Large deviations
60J55 Local time and additive functionals
60J60 Diffusion processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Donsker, M. D.; Varadhan, S. R.S., Asymptotic evaluation of certain Markov process expectations for large time, I-IV, Comm. Pure Appl. Math., 28, 1-47, 279-301 (1975), 29 (1976) 389-461; 36 (1983) 183-212 · Zbl 0348.60031
[2] Deuschel, K. D.; Stroock, D. W., (Large Deviations. Large Deviations, Pure Appl. Math., vol. 137 (1989), Academic Press: Academic Press San Diego)
[3] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications (1998), Springer: Springer New York · Zbl 0896.60013
[4] Wu, L., Uniformly integrable operator and large deviations for Markov processes, J. Funct. Anal., 172, 301-376 (2000) · Zbl 0957.60032
[5] Revuz, D.; Yor, M., (Continuous Martingales and Brownian Motion. Continuous Martingales and Brownian Motion, A Series of Comprehensive Studies in Mathematics (1991), Springer-Verlag) · Zbl 0731.60002
[6] Donsker, M. D.; Varadhan, S. R.S., Asymptotics for the Wiener sausage, Comm. Pure Appl. Math., 28, 525-565 (1975) · Zbl 0333.60077
[7] Bass, R.; Chen, X., Self-intersection local time: Critical exponent, large deviations, and laws of the iterated logarithm, Ann. Probab., 32, 4, 3221-3247 (2004) · Zbl 1075.60097
[8] Bass, R.; Chen, X.; Rosen, J., Large deviations for renormalized self-intersection local times of stable processes, Ann. Probab., 33, 3, 984-1013 (2005) · Zbl 1087.60060
[9] van der Vaart, Aad.; van Zanten, Harry., Donsker theorems for diffusions: Necessary and sufficient conditions, Ann. Probab., 33, 4, 1422-1451 (2005) · Zbl 1084.60047
[10] Ikeda, N.; Watanabe, S., Stochastic Differential Equations and Diffusion Processes (1981), North-Holland, Kodansha · Zbl 0495.60005
[11] Wu, L., Uniqueness of Nelson’s diffusions, Probab. Theory Related Fields, 114, 549-585 (1999) · Zbl 0936.60072
[12] Eberle, A., (Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators. Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators, Lecture Notes in Mathematics, vol. 1718 (1999), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0957.60002
[13] Wu, L., A deviation inequality for non-reversible Markov processes, Ann. Inst. Henri. Poincaré, Probabilités et Statistiques, 36, 4, 435-445 (2000) · Zbl 0972.60003
[14] Devroye, L., The equivalence of weak, strong and complete convergence in \(L^1\) for kernel density estimates, Ann. Stat., 11, 3, 896-904 (1983) · Zbl 0521.62033
[15] Lei, L.; Wu, L., Large deviations of kernel density estimator in \(L_1(R^d)\) for uniformly ergodic Markov processes, Stochastic Process Appl., 115, 275-298 (2005) · Zbl 1065.62058
[16] Lei, L., Large deviations of kernel density estimator in \(L^1(R^d)\) for reversible Markov processes, Bernoulli, 12, 1, 65-83 (2006) · Zbl 1098.62039
[17] Lei, L.; Wu, L.; Xie, B., Large deviations and deviation inequality for kernel density estimator in \(L_1(R^d)\)-distance, (Development of Modern Statistics and Related Topics. Development of Modern Statistics and Related Topics, Series in Biostatistics, vol. 1 (2003), World Scientific Press), 89-97 · Zbl 1082.62033
[18] Bosq, D.; Merlevède, F.; Peligrad, M., Asymptotic normality for density kernel estimators in discrete and continuous time, J. Multivariate Anal., 68, 1, 78-95 (1999) · Zbl 0926.60024
[19] Muckenhoupt, B., Hardy’s inequality with weights, Studia Math. XLIV, 31-38 (1972) · Zbl 0236.26015
[20] Chen, M. F., Eigenvalues, Inequalities, and Ergodic Theory, (Probability and its Applications (New York) (2005), Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London) · Zbl 1039.58030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.