×

zbMATH — the first resource for mathematics

Some explicit identities associated with positive self-similar Markov processes. (English) Zbl 1170.60017
Some special classes of Lévy processes are considered with no Gaussian component whose Lévy measure is of the type \(\pi(dx)=e^{\gamma x}\nu(e^x-1)dx\), where \(\nu\) is the density of the stable Lévy measure and \(\gamma\) is a positive parameter which depends on its characteristics. These processes were introduced by M. E. Caballero and L. Chaumont [J. Appl. Probab. 43, 967–983 (2006; Zbl 1133.60316)] as the underlying Lévy processes in the Lamperti representation of conditioned stable Lévy processes. The law of these Lévy processes at their first exit time from a finite or semi-finite interval, the law of their exponential functional and the first hitting time probability of a pair of points are computed explicitly.

MSC:
60G18 Self-similar stochastic processes
60G51 Processes with independent increments; Lévy processes
60G52 Stable stochastic processes
60G40 Stopping times; optimal stopping problems; gambling theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Bernyk, R.C. Dalang, G. Peskir, The law of the supremum of a stable Lévy process with no negative jumps, Ann. Probab. (2008) (in press) · Zbl 1185.60051
[2] Bertoin, J., Lévy processes, (1996), Cambridge University Press Cambridge · Zbl 0861.60003
[3] Bertoin, J.; Caballero, M.E., Entrance from 0+ for increasing semi-stable Markov processes, Bernoulli, 8, 2, 195-205, (2002) · Zbl 1002.60032
[4] Bertoin, J.; Yor, M., The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes, Potential anal., 17, 4, 389-400, (2002) · Zbl 1004.60046
[5] Bertoin, J.; Yor, M., On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes, Ann. fac. sci. Toulouse VI ser. math., 11, 1, 33-45, (2002) · Zbl 1031.60038
[6] Bertoin, J.; Yor, M., Exponential functionals of Lévy processes, Probab. surv., 2, 191-212, (2005) · Zbl 1189.60096
[7] Blumenthal, R.; Getoor, R.K.; Ray, D.B., On the distribution of first hits for the symmetric stable processes, Trans. amer. math. soc., 99, 540-554, (1961) · Zbl 0118.13005
[8] Boyarchenko, S.I.; Levendorskii, S.Z., Non-Gaussian merton – black – scholes theory, (2002), World Scientific Singapore · Zbl 0997.91031
[9] Caballero, M.E.; Chaumont, L., Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes, Ann. probab., 34, 1012-1034, (2006) · Zbl 1098.60038
[10] Caballero, M.E.; Chaumont, L., Conditioned stable Lévy processes and the Lamperti representation, J. appl. probab., 43, 967-983, (2006) · Zbl 1133.60316
[11] Carr, P.; Geman, H.; Madan, D.B.; Yor, M., The fine structure of asset returns: an empirical investigation, J. business, 75, 305-332, (2002)
[12] Chaumont, L., Conditionings and path decompositions for Lévy processes, Stochastic process. appl., 64, 39-54, (1996) · Zbl 0879.60072
[13] Chaumont, L.; Pardo, J.C., The lower envelope of positive self-similar Markov processes, Electron J. probab., 11, 1321-1341, (2006) · Zbl 1127.60034
[14] Cont, R.; Tankov, P., Financial modeling with jump processes, (2004), Chapman and Hall/CRC Boca Raton, FL · Zbl 1052.91043
[15] Doney, R.A., Fluctuation theory for Lévy processes, () · Zbl 0982.60048
[16] Doney, R.A.; Kyprianou, A.E., Overshoots and undershoots of Lévy processes, Ann. appl. probab., 16, 1, 91-106, (2006) · Zbl 1101.60029
[17] Getoor, R.K., Continuous additive functionals of a Markov process with applications to processes with independent increments, J. math. anal. appl., 13, 132-153, (1966) · Zbl 0138.40901
[18] Kou, S.G.; Wang, H., First passage times of a jump diffusion process, Adv. in appl. probab., 35, 504-531, (2003) · Zbl 1037.60073
[19] Kyprianou, A.E., Introductory lectures of fluctuations of Lévy processes with applications, (2006), Springer · Zbl 1104.60001
[20] Lamperti, J.W., Semi-stable Markov processes, Z. wahrscheinlichkeitstheor. verwandte geb., 22, 205-225, (1972) · Zbl 0274.60052
[21] A. Lewis, E. Mordecki, Wiener-Hopf factorization for Lévy processes having negative jumps with rational transforms. (2005) (preprint)
[22] Méjane, O., Upper bound of a volume exponent for directed polymers in a random environment, Ann. inst. H. Poincaré probab. statist., 40, 3, 299-308, (2004) · Zbl 1041.60079
[23] Monrad, D.; Silverstein, M.L., Stable processes: sample function growth at a local minimum, Z. wahrscheinlichkeitstheor. verwandte geb., 49, 2, 177-210, (1979) · Zbl 0431.60041
[24] Pistorius, M.R., On maxima and ladder processes for a dense class of Lévy processes, J. appl. probab., 43, 208-220, (2006) · Zbl 1102.60044
[25] V. Rivero, Recouvrements aléatoires et processus de Markov auto-similaires. Thèse de doctorat de l’université Paris VI, (2004)
[26] Rivero, V., Recurrent extensions of self-similar Markov processes and cramér’s condition, Bernoulli, 11, 3, 471-509, (2005) · Zbl 1077.60055
[27] Rogozin, B.A., The distribution of the first hit for stable and asymptotically stable random walks on an interval, Theory probab. appl., 17, 332-338, (1972) · Zbl 0272.60050
[28] Sato, K.I., Lévy processes and infinitely divisible distributions, (1999), Cambridge University Press Cambridge · Zbl 0973.60001
[29] Schoutens, W., Lévy processes in finance. pricing finance derivatives, (2003), Wiley New York
[30] Zolotarev, V.M., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.