×

zbMATH — the first resource for mathematics

New exact travelling wave solutions of the generalized Zakharov equations. (English) Zbl 1170.35524
Summary: A direct algebraic method is introduced for constructing exact travelling wave solutions of nonlinear partial differential equations with complex phases. The scheme is implemented for obtaining multiple soliton solutions of the generalized Zakharov equations. In addition, by using new exact solutions of an auxiliary ordinary differential equation, new exact travelling wave solutions for the generalized Zakharov equations are obtained.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
35C05 Solutions to PDEs in closed form
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hadouaj, H.; Malomed, B.A.; Maugin, G.A., Phys. rev. A, 44, 3932, (1991)
[2] Malomed, B.; Anderson, D.; Lisak, M., Phys. rev. E, 55, 962, (1997)
[3] Wang, M.L.; Li, X.Z., Phys. lett. A, 343, 48, (2005)
[4] Wang, Y.Y.; Dai, C.Q.; Wu, L.; Zhang, J.E, Chaos, Solitons. fractals, 32, 1208, (2007)
[5] Fan, E.G., Phys. lett. A, 300, 243, (2002)
[6] Parkes, E.J.; Duffy, B.R., Comp. phys. commun., 98, 288, (1996)
[7] Fan, E.G., Phys. lett. A, 277, 212, (2000)
[8] Zhou, Y.B.; Wang, M.L.; Wang, Y.M., Phys. lett. A, 308, 31, (2003)
[9] Sirendaoreji, Chaos. solitons. fractals, 19, 147, (2004)
[10] Liu, Z.T.FU,S.K.; Liu, S.D.; Zhao, Q., Phys. lett. A, 290, 72, (2001)
[11] Parkes, E.J.; Duffy, B.R.; Abbott, P.C., Phys. lett. A, 295, 280, (2002)
[12] Yan, Z.Y., Chaos. solitons. fractals, 15, 575, (2003)
[13] Xie, ED.; Zhang, Y.; Lii, Z.S., Chaos. solitons. fractals, 24, 257, (2005)
[14] H. Q., Zhang, Chaos. solitons. fractals, 26, 921, (2005)
[15] Wang, D.S.; Zhang, H.Q., Chaos. solitons. fractals, 25, 601, (2005)
[16] Yomba, E., Phys. lett. A, 336, 463, (2005)
[17] Wang, M.L.; Li, X.L., Chaos. solitons. fractals, 27, 477, (2006)
[18] Zhang, H.Q., Chaos. solitons. fractals, 28, 489, (2006)
[19] Khuri, S.A., Chaos. solitons. fractals, 32, 252, (2007)
[20] Zhang, H.Q., Chaos. solitons. fractals, 32, 653, (2007)
[21] H. Q., Zhang, Commun. nonlinear sci. numer. simul., 12, 627, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.