×

zbMATH — the first resource for mathematics

Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: theoretical framework and two-dimensional computations. (English) Zbl 1169.76396
Summary: A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to broadly accepted hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical significance, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples the production of entropy to counter numerical instabilities. The proposed technique is applied to materials with no shear strength (e.g., fluids), for which there exists a caloric equation of state, and extensions to the case of materials with shear strength (e.g., solids) are also envisioned. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
Software:
LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antman, S.S., Nonlinear problems of elasticity, Applied mathematical sciences, vol. 107, (2005), Springer New York · Zbl 1098.74001
[2] A. Barlow, A compatible finite element multi-material ALE hydrodynamics algorithm, Int. J. Numer. Methods Fluids, in press, doi:10.1002/fld.1593. · Zbl 1169.76030
[3] Belytschko, T.; Bindeman, L.P., Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput. methods appl. mech. engrg., 88, 3, 311-340, (1991) · Zbl 0742.73019
[4] Belytschko, T.; Bindeman, L.P., Assumed strain stabilization of the eight node hexahedral element, Comput. methods appl. mech. engrg., 105, 2, 225-260, (1993) · Zbl 0781.73061
[5] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), J. Wiley & Sons New York · Zbl 0959.74001
[6] Benson, D.J., A new two-dimensional flux-limited shock viscosity for impact calculations, Comput. methods appl. mech. engrg., 93, 39-95, (1991) · Zbl 0850.73050
[7] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. methods appl. mech. engrg., 99, 235-394, (1992) · Zbl 0763.73052
[8] Caramana, E.J.; Burton, D.E.; Shashkov, M.J.; Whalen, P.P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. comput. phys., 146, 227-262, (1998) · Zbl 0931.76080
[9] Carlson, D.E., Linear thermoelasticity, (), 297-345, (Chapter 2)
[10] M.A. Christon, Pressure gradient approximations for staggered-grid finite element hydrodynamics, Int. J. Numer. Methods Fluids, 2007, in preparation.
[11] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. methods appl. mech. engrg., 196, 21-24, 2413-2430, (2007) · Zbl 1173.76335
[12] Coleman, B.D.; Mizel, V.J., Existence of caloric equations of state in thermodynamics, J. chem. phys., 40, 4, 1116-1125, (1964)
[13] Flanagan, D.P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. numer. methods engrg., 17, 5, 679-706, (1981) · Zbl 0478.73049
[14] Goudreau, G.L.; Hallquist, J.O., Recent developments in large-scale finite element Lagrangian hydrocode technology, Comput. methods appl. mech. engrg., 33, 1-3, 725-757, (1982) · Zbl 0493.73072
[15] J.O. Hallquist, LS-DYNA theory manual, Technical report, Livermore Software Technology Corporation, Livermore, CA, March 2006, .
[16] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, New Jersey, (Dover reprint, 2000)
[17] Hughes, T.J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[18] Hughes, T.J.R.; Feijóo, G.R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method—a paradigm for computational mechanics, Comput. methods appl. mech. engrg., 166, 3-24, (1998) · Zbl 1017.65525
[19] Hughes, T.J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics: II. beyond SUPG, Comput. methods appl. mech. engrg., 54, 341-355, (1986) · Zbl 0622.76074
[20] Hughes, T.J.R.; Scovazzi, G.; Franca, L.P., Multiscale and stabilized methods, ()
[21] Kuropatenko, V.F., On difference methods for the equations of hydrodynamics, () · Zbl 0885.76055
[22] Noh, W.F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. comput. phys., 72, 78-120, (1987) · Zbl 0619.76091
[23] Puso, M.A., A highly efficient enhanced assumed strain physically stabilized hexahedral element, Int. J. numer. methods engrg., 49, 8, 1029-1064, (2000) · Zbl 0994.74075
[24] Scovazzi, G., Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPG operator for Lagrangian computations, Comput. methods appl. mech. engrg., 196, 4-6, 966-978, (2007) · Zbl 1120.76332
[25] Scovazzi, G.; Christon, M.A.; Hughes, T.J.R.; Shadid, J.N., Stabilized shock hydrodynamics: I. A Lagrangian method, Comput. methods appl. mech. engrg., 196, 4-6, 923-966, (2007) · Zbl 1120.76334
[26] G. Scovazzi, E. Love, M.J. Shashkov, A multi-scale Q1/P0 approach to Lagrangian shock hydrodynamics, Technical report, SAND2007-1423, Sandia National Laboratories, New Mexico, March 2007,  .
[27] Sedov, L.I., Similarity and dimensional methods in mechanics, (1959), Academic Press New York · Zbl 0121.18504
[28] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1998), Springer New York · Zbl 0934.74003
[29] Simo, J.C.; Tarnow, N., The discrete energy-momentum method. conserving algorithms for nonlinear elastodynamics, Z. angew. math. phys. (ZAMP), 43, 5, 757-792, (1992) · Zbl 0758.73001
[30] Tezduyar, T.E.; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput. methods appl. mech. engrg., 195, 1621-1632, (2006) · Zbl 1122.76061
[31] Truesdell, C.A., Rational thermodynamics, (1984), Springer-Verlag New York · Zbl 0598.73002
[32] Truesdell, C.A.; Noll, W., The non-linear field theories of mechanics, (1992), Springer-Verlag New York · Zbl 0779.73004
[33] Van der Ween, F.; Belytschko, T., Correction of article by D.P. flanagan and T. belytschko, Int. J. numer. methods engrg., 19, 3, 467-468, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.