×

zbMATH — the first resource for mathematics

Coupling of atomistic and continuum simulations using a bridging scale decomposition. (English) Zbl 1169.74635
Summary: We present a new method for coupling molecular dynamics (MD) and continuum mechanics simulations that is based on the projection of the MD solution onto the coarse scale shape functions. This projection, or “bridging scale”, represents that part of the solution that is obtainable by both solution methods. By subtracting the bridging scale from the total solution, we arrive at a coarse-fine decomposition that, by a proper choice of projection operator, decouples the kinetic energy of the two simulations. The resulting decomposition can be used in a finite-temperature simulation method in which MD is used only in a localized region, while the continuum simulation covers the entire domain, including the MD region to which it is coupled. One major advantage of this approach is that separate time step sizes can be used in the two simulations, so that the coarse scale time step is not limited to the time scale of the atomic vibrations present in the fine scale. Example problems are demonstrated on a 1D lattice, for which the method is shown to be accurate both for harmonic and anharmonic interatomic potentials.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
37N99 Applications of dynamical systems
82C99 Time-dependent statistical mechanics (dynamic and nonequilibrium)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gumbsch, P.; Cannon, R.M., Atomistic aspects at brittle fracture, MRS bull., 25, 5, 15-20, (2000)
[2] Muser, M.H., Towards an atomistic understanding of solid friction by computer simulations, Comput. phys. commun., 146, 1, 54-62, (2002) · Zbl 1195.74296
[3] Horstemeyer, M.F.; Baskes, M.I.; Plimpton, S.J., Computational nanoscale plasticity simulations using embedded atom potentials, Theor. appl. fract. mech., 37, 1-3, 49-98, (2001)
[4] Abraham, F.F.; Broughton, J.Q.; Bernstein, N.; Kaxiras, E., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture, Europhys. lett., 44, 6, 783-787, (1998)
[5] Broughton, J.Q.; Abraham, F.F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: methodology and application, Phys. rev. B, 60, 4, 2391-2403, (1999)
[6] Tadmor, E.B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. mag. A, 73, 6, 1529-1563, (1996)
[7] Tadmor, E.B.; Phillips, R.; Ortiz, M., Mixed atomistic and continuum models of deformation in solids, Langmuir, 12, 19, 4529-4534, (1996)
[8] Shenoy, V.B.; Miller, R.; Tadmor, E.B.; Phillips, R.; Ortiz, M., Quasicontinuum models of interfacial structure and deformation, Phys. rev. lett., 80, 4, 742-745, (1998)
[9] Miller, R.; Ortiz, M.; Phillips, R.; Shenoy, V.; Tadmor, E.B., Quasicontinuum models of fracture and plasticity, Eng. fract. mech., 61, 3-4, 427-444, (1998)
[10] Miller, R.; Tadmor, E.B.; Phillips, R.; Ortiz, M., Quasicontinuum simulation of fracture at the atomic scale, Model simulat. mater. sci., 6, 5, 607-638, (1998)
[11] Ortiz, M.; Cuitino, A.M.; Knap, J.; Koslowski, M., Mixed atomistic continuum models of material behavior: the art of transcending atomistics and informing continua, MRS bull., 26, 3, 216-221, (2001)
[12] Shenoy, V.; Phillips, R., Finite temperature quasicontinuum methods, (), 465-471
[13] Li, S.; Liu, W.K., Meshfree and particle methods and their applications, Appl. mech. rev., 55, 1, 1-34, (2002)
[14] Hughes, T.J.R.; Feijoo, G.R.; Mazzei, L.; Quincy, J.B., The variational multiscale method – a paradigm for computational mechanics, Comput. meth. appl. mech. eng., 166, 1-2, 3-24, (1998) · Zbl 1017.65525
[15] Garikipati, K.; Hughes, T.J.R., A variational multiscale approach to strain localization – formulation for multidimensional problems, Comput. meth. appl. mech. eng., 188, 1-3, 39-60, (2000) · Zbl 1011.74069
[16] Liu, W.K.; Uras, R.A.; Chen, Y., Enrichment of the finite element method with the reproducing kernel particle method, J. appl. mech-T ASME, 64, 4, 861-870, (1997) · Zbl 0920.73366
[17] Wagner, G.J.; Liu, W.K., Hierarchical enrichment for bridging scales and mesh-free boundary conditions, Int. J. numer. meth. eng., 50, 3, 507-524, (2001) · Zbl 1006.76073
[18] Han, W.M.; Wagner, G.J.; Liu, W.K., Convergence analysis of a hierarchical enrichment of Dirichlet boundary conditions in a mesh-free method, Int. J. numer. meth. eng., 53, 6, 1323-1336, (2002) · Zbl 0995.65108
[19] Adelman, S.A.; Doll, J.D., Generalized Langevin equation approach for atom/solid-surface scattering – collinear atom/harmonic chain model, J. chem. phys., 61, 10, 4242-4245, (1974)
[20] Adelman, S.A.; Doll, J.D., Generalized Langevin equation approach for atom-solid-surface scattering – general formulation for classical scattering off harmonic solids, J. chem. phys., 64, 6, 2375-2388, (1976)
[21] Berendsen, H.J.C.; Postma, J.P.M.; Vangunsteren, W.F.; Dinola, A.; Haak, J.R., Molecular-dynamics with coupling to an external Bath, J. chem. phys., 81, 8, 3684-3690, (1984)
[22] Cai, W.; de Koning, M.; Bulatov, V.V.; Yip, S., Minimizing boundary reflections in coupled-domain simulations, Phys. rev. lett., 85, 15, 3213-3216, (2000)
[23] W. E, Z.Y. Huang, Matching conditions in atomistic-continuum modeling of materials, Phys. Rev. Lett. 87 (13) (2001), art. no. 135501
[24] G.J. Wagner, E. Karpov, W.K. Liu, Molecular dynamics boundary conditions for regular crystal lattices, Comput. Meth. Appl. Mech. Eng., in press · Zbl 1079.74526
[25] Farhat, C.; Lesoinne, M., Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. meth. appl. mech. eng., 182, 3-4, 499-515, (2000) · Zbl 0991.74069
[26] Belytschko, T.; Yen, H.; Mullen, R., Mixed methods for time integration, Comput. meth. appl. mech. eng., 17-8, 259-275, (1979) · Zbl 0403.73002
[27] Liu, W.K.; Belytschko, T., Mixed-time implicit – explicit finite-elements for transient analysis, Comput. struct., 15, 4, 445-450, (1982) · Zbl 0488.73071
[28] Liu, W.K., Development of mixed time partition procedures for thermal-analysis of structures, Int. J. numer. meth. eng., 19, 1, 125-140, (1983) · Zbl 0497.73084
[29] Haile, J.M., Molecular dynamics simulation: elementary methods, (1992), Wiley New York
[30] D. Qian, Multiscale simulation of the mechanics of carbon nanotubes, Ph.D. Thesis, Northwestern University, 2002
[31] D. Qian, G.J. Wagner, W.K. Liu, A multicale projection method for the analysis of carbon nanotubes, in press · Zbl 1079.74595
[32] Reif, F., Fundamentals of statistical and thermal physics, (1965), McGraw-Hill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.