×

zbMATH — the first resource for mathematics

X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation. (English) Zbl 1169.74593
Summary: This paper is devoted to the simulation of dynamic brittle crack propagation in an isotropic medium. It focuses on cases where the crack deviates from a straight-line trajectory and goes through stop-and-restart stages. Our argument is that standard methods such as element deletion or remeshing, although easy to use and implement, are not robust tools for this type of simulation essentially because they do not enable one to assess local energy conservation. Standard cohesive zone models behave much better when the crack’s path is known in advance, but are difficult to use when the crack’s path is unknown. The simplest method which consists in placing the cohesive segments along the sides of the finite elements leads to crack trajectories which are mesh-sensitive. The adaptive cohesive element formulation, which adds new cohesive elements when the crack propagates, is shown to have the proper energy conservation properties during remeshing. We show that the X-FEM is a good candidate for the simulation of complex dynamic crack propagation. A two-dimensional version of the proposed X-FEM approach is validated against dynamic experiments on a brittle isotropic plate.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Prabel, B.; Combescure, A.; Gravouil, A.; Marie, S., Level set X-FEM non-matching meshes: application to dynamic crack propagation in elastic – plastic media, Int. J. numer. methods engrg., 69, 1533-1569, (2007) · Zbl 1194.74465
[2] Allix, O.; Deu, J.F., Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading, Engrg. trans., 45, 1, 29-46, (1997)
[3] Menouillard, T.; Rethore, J.; Combescure, A.; Bung, H., Efficient explicit time stepping for the extended finite element method (X-FEM), Int. J. numer. methods engrg., 68, 9, 911-939, (2006) · Zbl 1128.74045
[4] Rethore, J.; Gravouil, A.; Combescure, A., An energy conserving scheme for dynamic crack growth using extended finite element method, Int. J. numer. methods engrg., 63, 631-659, (2005) · Zbl 1122.74519
[5] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 1, 133-150, (1999) · Zbl 0955.74066
[6] Curran, D.R.; Seaman, L., Dynamic failure of solids, Phys. rep., 147, 253-388, (1987)
[7] Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: part I - yield criteria and flow rules for porous ductile media, J. mech. phys. solids, 17, 201-217, (1977)
[8] Moes, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets. part I: mechanical model, Int. J. numer. methods engrg., 53, 11, 2549-2568, (2002) · Zbl 1169.74621
[9] Gravouil, A.; Moes, N.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets—part II: level set update, Int. J. numer. methods engrg., 53, 11, 2569-2586, (2002) · Zbl 1169.74621
[10] Ladeveze, P., A damage computational method for composite structures, Comput. struct., 44, 79-87, (1992)
[11] Ladeveze, P.; Allix, O.; Deu, J.F., A mesomodel for localization and damage computation in laminates, Comput. methods appl. mech. engrg., 183, 105-122, (2000) · Zbl 0992.74065
[12] Remmers, J.; de Borst, R.; Needleman, A., A cohesive segments method for simulation of crack growth, Comput. mech., 31, 69-77, (2003) · Zbl 1038.74679
[13] Attigui, P.; Petit, C., Mixed mode separation in dynamic fracture mechanics: new path independent integrals, Int. J. fracture, 84, 1, 19-36, (1997)
[14] L.B. Freund, Dynamic Fracture Mechanics, Cambridge Monographs on Mechanics and Applied Mathematics, 1990. · Zbl 0712.73072
[15] Lemaitre, J., A course on damage mechanics, (1996), Springer Paris · Zbl 0852.73003
[16] Suffis, A.; Combescure, A., Modèle d’endommagement à effet retard, étude numérique et analytique de l’évolution de la longueur caractéristique, Rev européenne eléments finis, 11, 5, (2002) · Zbl 1120.74736
[17] Suffis, A.; Combescure, A.; Lubrecht, A., Damage model with delay effect: analytical and numerical studies of the evolution of the characteristics length, Int. J. solids struct., 40, 3463-3476, (2003) · Zbl 1038.74606
[18] ASuffis, Développement d’un modèle d’endommagement à taux de croissance contrôlée pour la simulation robuste de ruptures sous impact, Ph.D. thesis no. 04ISAL0033, 2004, INSA-Lyon.
[19] Bui, H.D., Mécanique de la rupture fragile, (1978), Masson
[20] Bui, H.D., Associated path independent J integral for separation mixed modes, J. mech. phys. solids, 31, 439-448, (1983) · Zbl 0523.73074
[21] Tuler, F.R.; Butcher, B.M., A criterion for the time dependence of dynamic fracture, Int. J. fracture, 4, 431-437, (1968)
[22] Black, T.; Belytschko, T., Elastic crack growth in finite element with minimal remeshing, Int. J. numer. methods engrg., 45, 601-620, (1999) · Zbl 0943.74061
[23] Belytschko, T.; Moes, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. numer. methods engrg., 50, 4, 993-1013, (2001) · Zbl 0981.74062
[24] Rethore, J.; Gravouil, A.; Combescure, A., A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing, Comput. methods appl. mech. engrg., 193, 4493-4510, (2004) · Zbl 1112.74537
[25] Krysl, P.; Belytschko, T., Dynamic propagation of arbitrary 3D cracks, Int. J. numer. methods engrg., 44, 6, 767-800, (1999) · Zbl 0953.74078
[26] Kanninen, M.; Popelar, C.H., Advanced fracture mechanics, (1985), Oxford University Press · Zbl 0587.73140
[27] Maigre, H.; Rittel, D., Mixed-mode quantification for dynamic fracture initiation: application to the compact compression specimen, 1993, Int. J. solids struct., 30, 23, 3233-3244, (1993)
[28] Zhou, F.; Molinari, J.F., Three dimensional dynamic crack propagation using cohesive elements: A methodology to address mesh dependency, Int. J. numer. methods engrg., 59, 1, 1-24, (2004) · Zbl 1047.74074
[29] Zhou, F.; Molinari, J.F.; Shioya, T., A rate-dependent cohesive model for dynamic crack propagation in brittle materials, Engrg. fracture mech., 72, 9, 1383-1410, (2005)
[30] Xu, X.P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. mech. phys. solids, 42, 9, 1397-1407, (1994) · Zbl 0825.73579
[31] Camacho, G.T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. solids struct., 33, 20, 2899-2938, (1996) · Zbl 0929.74101
[32] Falk, M.L.; Needleman, A.; Rice, J.R., A critical evaluation of cohesive zone models of dynamic fracture, J. phys. IV, 5, 43-50, (2001)
[33] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. numer. methods engrg., 44, 9, 1267-1282, (1999) · Zbl 0932.74067
[34] Pandolfi, A.; Ortiz, M., An efficient adaptive procedure for three-dimensional fragmentation simulations, Engrg. comput., 18, 148-159, (2002)
[35] Ruiz, G.; Pandolfi, A.; Ortiz, M., Three-dimensional cohesive modeling of dynamic mixed-mode fracture, Int. J. numer. methods engrg., 52, 97-120, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.